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ABSTRACT

This report summarizes the effort conducted at The Pennsylvania

State University during the period from September 1972 - July 1973 to

gather additional understanding of the complex inviscid and viscid

effects existing within the passages of a three-bladed axial flow

inducer operating at.a flow coefficient of 0.065. The experimental

investigations undertaken included determination of the blade static

pressure and blade limiting streamline angle distributions, and measure-

ment of the three components of mean velocity, turbulence intensities

and turbulence stresses at locations inside the inducer blade passage

utilizing a rotating three-sensor hotwire probe. Applicable equations

were derived for the hotwire data reduction analysis and solved numeri-

cally to obtain the appropriate flow parameters. Analytical investi-

gations were conducted to predict the three-dimensional inviscid flow in

the inducer by numerically solving the exact equations of motion, and to

approximately predict the three-dimensional viscid flow by incorporat-

ing the dominant viscous terms into the exact equations. The analytical

results are compared with the experimental measurements and design

values where appropriate. Radial velocities are found to be of the same

order as axial velocities within the inducer passage, confirming the

highly three-dimensional characteristic of inducer flow and emphasizing

the necessity for a suitable three-dimensional theory for accurate flow

prediction. Total relative velocity distributions indicate a substan-

tial velocity deficiency near the tip at mid-passage which expands sig-

nificantly as the flow proceeds toward the inducer trailing edge. High

turbulence intensities and turbulence stresses are concentrated within

this core region. Considerable wake diffusion occurs immediately down-

stream of the inducer trailing edge to decay this loss core. Evidence

of boundary layer interactions, blade blockage effects, radially inward

flows, annulus wall effects and backflows are all found to exist within

the long, narrow passages of the inducer, emphasizing the complex nature

of inducer flow which makes accurate-prediction of the flow behavior

extremely difficult.
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INTRODUCTION

Objectives and Statement of the Problem

Inducers are designed to increase the suction specific speed of

centrifugal impellers in liquid rocket feed systems and are used to

provide a small head rise sufficient to operate without cavitation.

Typical inducer characteristics include high solidity (ratio of blade

chord to blade spacing), low aspect ratio (span squared to blade area),

and low flow coefficient (ratio of inlet axial velocity to blade tip

speed). The flow in these long and narrow passages is greatly

influenced by the effects of turbulence and viscosity, resulting in

large friction losses and introducing considerable three-dimensionality

in the flow, thus making the prediction of the flow behavior extremely

difficult. Secondary motions within the inducer are not confined to

thin regions at the blade surface, but extend over the entire cross-

section of the flow.

The primary objective of the current study reported in this thesis

has been to gather additional understanding of the complex inviscid and

viscid effects on the inducer flow field, including the three components

of mean velocity, turbulence intensities and turbulence stresses inside

the passage. It is hoped that the knowledge gained from this investi-

gation will serve the establishment of a theoretical model for the

eventual analysis of the three-dimensional flow in inducers as well as

other turbomachinery dominated by secondary fluid motions caused by

viscosity and turbulence. Hence, the subjects addressed in this thesis

are:
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1) To develop measuring techniques using a triaxial hotwire probe

to measure the three components of velocity, turbulence intensities and

stresses within the rotating blade channel.

2) Using these techniques, to carry out a complete flow survey of

two axial stations within the blade passage.

3) To perform a complete survey of the static pressure distribution

on the blade suction and pressure surfaces.

4) To perform a complete survey of limiting streamline angle on

the blade suction and pressure surfaces.

5) To predict the three-dimensional inviscid flow in the inducer

by numerically solving the exact equations of motion and to study the

possible methods of reducing the computation time required for the

convergence to the solutions of these equations.

6) To approximately predict the three-dimensional viscid flow in

the inducer using dominant viscous terms in the exact solution equations.

Previous Related Work

The Department of Aerospace Engineering at The Pennsylvania State

University has been conducting a systematic analytical and experimental

investigation of flow behavior in axial flow inducers under NASA

sponsorship since November 1963. A brief summary of previous

theoretical and experimental results obtained from this investigation

is given in this section, in addition to the applicable results of

related research by other sources.
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Analytical Investigations

Because of the presence of large secondary flows caused by three-

dimensional boundary layers and the complexity of the viscid equations

of motion governing the inducer flow, very little theoretical analysis

is available related to the prediction of the three-dimensional flow

characteristics. Most of the design and analysis of the inducer fluid

flow is based on conventional two-dimensional methods.

Montgomery (Ref. 17) used the simplified radial equilibrium

equation 2
ah c--= (1)
r gor

in conjunction with arbitrary expressions for the losses to predict the

exit head rise and flow coefficient for an 800 helical inducer. However,

the use of arbitrary loss expressions does not provide any specific

method of relating the loss distribution to a given inducer geometry or

flow characteristic.

An approximate solution using the simplified radial equilibrium

equation in an integrated form has been obtained for a four-bladed

inducer by Lakshminarayana (Ref. 9). The basic assumptions in this

analysis are the existence of fully developed turbulent flow, the shape

of the radial and mainstream direction velocity profiles and the use of

empirically determined friction loss coefficients. This analysis leads

to a good prediction of the outlet absolute tangential velocity, but

axial velocities are not predicted due to the lack of accurate information

concerning the radial velocity profiles within the blade passage.

The momentum integral equations valid for the inducer have been

developed and programmed for numerical solution (Ref. 2). The equations
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take into account the changes in free stream velocity due to camber and

incidence in addition to the interaction between the pressure and

suction surface boundary layers, and is based on skin friction

correlations for rotating boundary layers developed in Ref. 14. The

numerical technique utilizes a fourth-order difference scheme.

Preliminary results of the analysis are discussed in Ref. 2.

An accurate knowledge of boundary layer characteristics and skin

friction losses in a rotating channel is a prerequisite for the develop-

ment of an acceptable theoretical model for the inducer flow. While a

considerable amount of information on viscous flow in a non-rotating flow

passage is available, there is no information available for the rotating

case. A systematic study of the boundary layer on a rotating blade and

inside a rotating channel has been undertaken by the Aerospace

Engineering Department at The Pennsylvania State University. In the

first phase of this program, the boundary layer on a simpler configura-

tion (a single rotating helical blade of large chord length enclosed in

an annulus) was studied. The results of this investigation are reported

in Ref. 14. Consequently, this investigation has been extended to a

four-bladed flat plate inducer in Ref. 2, where an attempt has been made

to predict and measure the boundary layer characteristics inside the

blade passage. Further study is to be made on the three-dimensional

boundary layer characteristics within the inducer passage by utilizing

the rotating hotwire anemometry techniques developed in this thesis.

Information gained through this investigation should provide knowledge

of the significant viscous effects within the blade passage and

eventually lead to the exact prediction of the inducer flow.



A significant contribution toward the general solution of the

equations governing the inducer flow is due to Cooper and Bosch (Ref. 4).

This three-dimensional analysis employs an iterative numerical procedure

to solve the inviscid equations of motion, expressed in finite-difference

form, for a grid of points representing the channel between the blades.

This method is discussed in greater detail in a later section of this

thesis.

Experimental Investigations

Several experimenters have investigated inducers of varying

geometry and inlet angle and have tested them in various fluids such

as water, liquid hydrogen or nitrogen under a wide range of flow

parameters (Refs. 16, 17, 18, 19, 21, 23, 24). In most cases, however,

these studies deal only with cavitation performance, overall performance

and efficiency.

Acosta (Ref. 1) has studied the cavitating and non-cavitating

performance of 780, 810 and 840 helical flat plate inducers under

various flow coefficients. His investigations at $ = 0.070 under

non-cavitating conditions observed a deterioration in the radial

distribution of axial velocity and head rise at the inducer exit, with

a backflow region near the hub and a sharp positive gradient in head rise

near the tip. These results are similar to those obtained in Ref. 20

for a three-bladed inducer at = 0.065. Acosta attributes strong three-

dimensional and viscid effects for the departure of the flow from design

values based of the simplified radial equilibrium equation. He also

noticed a decrease in inducer efficiency at large solidity, which can be

attributed to the influence of blade blockage on flow characteristics
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and an increase in viscous and turbulent mixing losses due to the

decrease in channel width. These results are confirmed in Refs. 11 and

20. Soltis, Anderson and Sandercock (Ref. 23) were led to similar

conclusions while investigating the non-cavitating performance of a 780

axial inducer under various flow coefficients. They derived the outlet

axial velocity profile using experimental values of the total pressure

and outlet flow angles in the simplified radial equilibrium equation.

This analysis tends to establish that the flow is axisymmetric at small

axial distances downstream of the trailing edge, since radial velocities

are likely to be small and the wake diffusion in such inducers is very

rapid. Similar observations are made by Mullan (Ref. 18), Meng and

Moore (Ref. 16), Montgomery (Ref. 17), and Osborn (Ref. 19).

The main conclusions of the various investigations described above

are:

1) The overall head rise coefficient increases, especially near

the tip, when the operating flow coefficient decreases.

2) The total head rise coefficient increases when the solidity of

the blades is decreased.

3) The radial distribution of outlet velocity tends to deteriorate

when the flow coefficient is decreased. At low flow coefficients and

for most inducer configurations, there is a large positive radial

gradient in exit axial velocity with a backflow near the hub.

Experimental investigations at The Pennsylvania State University

have been conducted on a three-foot diameter inducer operated in air at

a flow coefficient of 4 = 0.065. The inducer has been operated with

four, three, and two blades giving solidities at the tip of 2,86, 2.13,
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and 1.43 respectively. The inducer test facility is shown in Fig. la,

with design values of inducer inlet and outlet angles given in Fig. lb.

A visualization study of the flow through the four-bladed inducer

configuration is reported in Ref. 10. The flow near the blade surfaces,

inside the rotating passage, downstream and upstream of the inducer is

visualized by means of smoke, tufts, ammonia filament and lamp black

techniques. The flow is found to be highly three-dimensional with

appreciable radial velocity throughout the passage. Some of the major

conclusions of this visualization study are:

1) At or near design flow coefficient, no backflow is observed up-

stream of the inducer. A separated region of the flow exists near the

hub at the discharge of the inducer.

2) The extent of the backflow increases considerably, both at

inlet and at exit, for flow coefficients lower than the design value.

3) The expected radial motions within the blade passage have been

confirmed and appear to be quite strong at all the radii.

4) The radial flows inside the blade boundary layer, when

encountered by the annulus wall, tend to deflect toward the mid-passage

and then radially inward.

The qualitative nature of the velocity profiles, derived from

visualization experiments (Ref. 10), indicate that the conventional

practice of assuming the boundary layer is thin, two-dimensional and is

a small perturbation of the inviscid flow is not valid in this case.

The values of limiting streamline angles are found to be large.

The flow measurement at several stations downstream of the blade

row are reported in Refs. 9, 20 and 11 for four-, three- and two-bladed

inducers respectively. The radial distribution of stagnation and static
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pressure, axial and tangential velocity and flow angles of the absolute

flow were measured at the several locations downstream using conventional

and hotwire probes. Absolute flow measurements were also carried out

at the exit of the three-bladed and two-bladed inducers and reported in

Refs. 8 and 20 and Ref. 11 respectively. All inducers were tested at

the same flow coefficient and Reynolds number. Major conclusions

derived by comparison of these measurements with those of the four-

bladed inducer are:

1) The performance of the inducer improves continuously with

decrease in solidity, the two-bladed inducer showing substantial improve-

ment over both the four- and three-bladed inducers.

2) The static and stagnation head rise increases continuously, at

all radii, with decrease in solidity. The radial gradient of stagnation

head rise coefficient, 3T /3r, is found to be almost constant from hub

to tip for the two-bladed inducer, unlike that at the other solidities

where a steep rise is observed near the tip.

3) The downstream axial velocity profile:is found to be similar,

qualitatively, for all the inducers tested. The steep rise in axial

velocity toward the tip observed in three- and four-bladed inducers is

absent in the case of the two-bladed configuration, but the extent of

separated zone (backflow) near the hub increases continuously with

decrease in solidity.

4) The radial distribution of tangential velocity shows a trend

similar to the T distribution. However, the large values of DV/Dr

observed in four-and three-bladed inducers are reduced substantially in

the two-bladed configuration.
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5) Hydraulic efficiency (local as well as overall) increases

continuously with decrease in solidity.

In order to understand the flow behavior inside the inducer passages,

experimental investigation of the relative blade-to-blade flow inside the

inducer passages is undertaken using rotating pressure probes and the

pressure transfer device. Measurements inside the four-bladed inducer

are reported in Refs. 7 and 15 and for the three-bladed inducer in Refs.

7 and 20. The measurement of relative flow near the trailing edge

reveals the presence of a loss core located slightly inward from the

tip. The mid-passage at this radius is found to have minimum relative

stagnation pressure and hence maximum loss. The radial velocity inside

the blade boundary layer, when encountered by the annulus wall, tends to

deflect toward the mid-passage and then radially inward. These inter-

action effects are responsible for the large losses observed experi-

mentally. These loss regions extend radially from mid-radius to tip.

Comparison of the relative flow measurements taken in the three-and four-

bladed inducers provide the following conclusions:

1) Measurements taken near the leading edge shows marked reduction

in boundary layer growth, flow losses and radial inward velocity in the

case of the three-bladed inducer. The losses near the tip are nearly

halved from those of the four-bladed inducer and the "wake" type of

profile observed near the mid-passage of the tip disappears in the case

of the three-bladed inducer.

2) Measurements taken near the trailing edge indicate that the

relative velocity and pressure distributions (blade-to-blade) are

similar for both of the inducers, even though there is appreciable



reduction in losses and relative flow diffusion in the case of the

three-bladed configuration.

3) There is appreciable improvement in hub and wall static

pressure distribution in the case of the three-bladed inducer.

A method of measuring the three velocity components and the corres-

ponding turbulent intensities has been developed for a stationary

reference frame and has been reported in Refs. 12 and 20. This procedure,

which utilizes three stationary hotwires located in the coordinate

directions and located very near to the inducer trailing edge, has led

to valuable information on the blade-to-blade variation of all the

velocity and turbulence intensity components at that location. Major

conclusions from these measurements are:

1) The radial velocities obtained from the hotwire measurements

are found to be of the same order of magnitude as the axial velocities

throughout the flow passage.

2) The blade-to-blade variation of axial, tangential and radial

velocities measured at the exit by means of the hotwire probes are

found to be nearly uniform. Similarly, the blade-to-blade variation of

the relative velocities derived from the hotwire data is found to be

nearly uniform. This is probably due to considerable wake diffusion

that takes place between the trailing edge and the hotwire measuring

station.

3) The exit turbulence intensities are found to be rather uniform

in the entire flow passage. The magnitudes of the turbulence intensities

also reveal the highly turbulent nature of the flow in inducers.

In an axial flow inducer, the interaction between the pressure

surface and suction surface boundary layers result in an extremely
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complex flow, especially near the outer half of the blade span. Since

these interaction effects are very complex, experimental investigation

assumes a very important role in this program. These effects are being

studied at The Pennsylvania State University in a helical channel,

specifically designed and fully instrumented for this purpose. The

channel consists of constant-thickness blades of zero camber. It is

proposed to carry out experiments at zero and other incidences. Details

of the experimental program, the Reynolds equation and velocity profiles

analysis valid for this flow and some preliminary measurements are given

in Ref. 2.

Methods and Means of Investigation

As discussed in the previous sections, the three-dimensional viscid

and inviscid effects of the inducer fluid flow makes meaningful

predictions extremely difficult. An existing numerical procedure to

simultaneously solve the three-dimensional equations of inviscid motion

and continuity, developed by Cooper and Bosch (Ref. 4), is first utilized

in an attempt to obtain the inviscid solution of the inducer flow field.

The inducer geometry used for this numerical analysis is shown in Fig. 2.

The incorporation of the dominant viscous terms into the equations of

motion of Ref. 4 is then attempted. Use is made of empirically derived

values of blade skin friction coefficient to derive the necessary

viscous terms in the equation. The exact equations of motion, including

all of the viscous terms, are extremely difficult to solve numerically.

As an approximation, only the dominant viscous terms in the r-e-z

directions are considered.
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Because of the iterative nature of the solution to the exact

equations, a large amount of computer time and computer storage is

usually required. In an attempt to reduce the solution convergence

time, a method of initially determining input variables needed by the

exact solution program is derived.

Extensive measurements inside the blade passages are carried out

not only to confirm the validity of the flow predictions, but also to

gain a better understanding of the secondary motions of the flow.

Extensive blade static pressure distributions are measured and compared

with theory and a thorough survey of limiting streamline angles on the

blade surface is also presented. A triaxial hotwire anemometer is used

for measuring the three components of velocity, turbulence intensity and

turbulence stress within the rotating inducer blade passage. The techni-

ques used in this method are described in detail in a later section.

The location of the experimental flow measuring stations are given in

Fig. 3. Comparison of experimental results with results of the present

theoretical analysis an4 results of previous investigations are dis-

cussed.

The three-bladed inducer was used in the experimental and theoreti-

cal investigations of this thesis.
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THEORETICAL ANALYSIS

A thorough knowledge of all significant inviscid effects (blade

blockage, flow turning, finite hub/tip ratio, etc.) and viscid effects

(boundary layer growth, energy dissipation, etc.) is essential in the

accurate prediction of the flow in all turbomachinery. Relevant to

this, the availability of modern computers with large storage capacities

and fast computation times greatly enhance the possibility of numerically

solving the complete equations of motion. One of the early investi-

gations in this area was made by Cooper and Bosch (Ref. 4) for the case

of the three-dimensional inviscid flow through axial flow inducers.

Application of this method of analysis to the Penn State inducer is

given in this chapter. In addition, this chapter describes modifications

to the Cooper-Bosch method which have been attempted to help reduce

convergence time of the solution and provide a viscid solution capability

based on empirically determined blade skin friction coefficients. A

method of initializing the blade flow parameters as input to the Cooper-

Bosch method has also been attempted in a search for a faster convergence

to the solution.

Exact Inviscid Analysis

As mentioned above, Cooper and Bosch have developed a method of

obtaining the exact inviscid solution of the inducer flow field. This

three-dimensional analysis employs an iterative numerical procedure to

solve the equations of motion expressed in finite-difference form.
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General Equations and Method

The nonlinear partial differential equations governing the flow in

a rotating cylindrical coordinate system r, 0, z are:

go au v a au u 1 2
r momentum: - W -+U (V + r)2+F =0 (2)

p ar ar r r r

8 momentum: o 2+ U - - +K 1 + - + 2U + F 0 (3)
pr DO ar r DO 3Z r a

o + W v aW aW
z momentum: --- z + U + + W 2- + F = 0 (4)

p az ar r 86 8z z

continuity: - + au + + - 0 (5)r ar r z(5)

Where W, V, U are relative velocities in the axial, tangential and

radial directions respectively (Fig. 2). Fr, F8 and Fz are the

components of the body forces including.viscous terms, and are zero for

the inviscid case considered in this section. In the Cooper-Bosch

method, the above equations are rearranged to give residuals which are

reduced to zero by a relaxation procedure. The total residual (RT) of

one relaxation cycle is calculated by

IMAX JMAX KMAX
RT = [(R)2 + (R2)2 + (R3)2 + (R4) 2i,j,k (6)

i=l j=1 k=l

where Rl, R2, R3 and R4 are the residuals calculated for the three

momentum equations (2-4) and the continuity equation (5), and IMAX,

JMAX and KMAX are the number of grid stations in the radial, tangential

and axial directions which are used in the numerical analysis.
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From this, the total RMS (root mean square) residual is defined as

RMS = (RT)2 . (7)

4 (IMAX) (JMAX) (KMAX)

and is thus a measure of the degree of convergence between the iterated

solution and the exact solution.

The application of this method to the solution of the flow in the

three-bladed Penn State inducer has been reported by Poncet and

Lakshminarayana in Ref. 20.

In applying this method to the Penn State inducer, the flow is

assumed to be incompressible, and a grid of 7 x 7 x 26 is chosen to

represent the blade passage. The flow geometry is shown in Fig. 2.

The boundary condition to be satisfied on the hub, annulus walls

-- - -
and the blade surfaces is QR" n = 0, where n is the direction normal

to the channel boundaries and QRis the total relative velocity.

The first of the 26 axial stations corresponds to the upstream

through-flow boundary where the initial conditions are applied. For

the boundary value problem to be consistent, these initial upstream

conditions must specify the three components of velocity and pressure,

and the tangential velocity on the second axial station (which thus

defines the swirl at the inlet of the inducer).

The last four axial stations correspond to the downstream flow-

through boundary, and extend to about one-fifth of the chord length

downstream of the trailing edge. With QR' n = 0 to be satisfied on

these stagnation stream surfaces, the set of boundary conditions for

the problem is complete.
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The Cooper-Bosch program has been suitably modified for use on

the high speed digital computer system at The Pennsylvania State

University. However, because of the iterative techniques employed in

the Cooper-Bosch program, a large amount of computer time is usually

required to converge to a satisfactory solution. For increased

efficiency, the program has been compiled under a Fortran IV H level

optimization procedure which reduces the time required for repetitive

calculations, and production runs were submitted using the resulting

object card deck. Output results from the computer program were placed

onto 9 track, 1600 BPI (bits per inch) magnetic computer tape for future

accessibility.

Initial Input to the Exact Solution Program

An investigation of available mathematical methods to solve the

four simultaneous nonlinear partial differential equations governing the

inducer flow revealed that there was no alternate method which would

solve the equations more efficiently or effectively with a minimum of

programming effort than the method described in Ref. 4. The next

available approach for the speedier solution of the governing flow

equations is the optimization of the input parameters of velocity and

pressure which would allow faster convergence to the three-dimensional

solution. Cooper and Bosch have derived an approximate solution in

Ref. 4 to be used as an initial input to the exact program. This method

derives the blade-to-blade average quantities using axisymmetric

equations, then uses these quantities in a blade-to-blade solution of an

integrated form of the scalar momentum equation in the tangential

direction. The flow parameters derived by this method were used in
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Ref. 20. However, an alternative method of developing the initial input

flow parameters has been attempted in the present analysis, and is

discussed in detail in the following two sections.

Douglas-Neumann Analysis.- The initial estimation for the velocity

and static pressure distribution throughout the inducer flow passage is

calculated by the two-dimensional Douglas-Neumann program described in

detail in Ref. 5. The technique employed by the Neumann program to

solve a particular fluid flow problem is to use source distributions of

appropriate strength on the surface of the blade profile in such a way

that the flow normal to the surface of the body is either zero or

prescribed. When the Neumann boundary condition is applied, an

integral equation in source strength E is obtained

-C * n = c(s) + f E(x)A(x,s) dx (8)
body

where A(x,s) = n * C(x,s) and Co is the onset flow. C(x,s) is the

velocity at a surface point s due to a unit source at x. The solution

for the general case of a lifting cascade at any angle of attack is

calculated by superposition of three '"basic flows" in such a way that

the correct angle of attack is obtained and the Kutta condition is

satisfied. The "basic" flows are: flow at zero angle of attack, flow

at 900 angle of attack, and circulatory flow for each cascade. Super-

position of solutions is possible because the potential equation is

linear and the boundary condition on the cascade blade is homogeneous.
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In the Douglas-Neumann results, velocities and static pressure

coefficients are normalized with the modulus of the average onset flow

velocity

C +C
inlet exit2- (9)2

The listing of the Douglas-Neumann program is given in Ref. 5.

Quasi-Three-Dimensional Modification.- The investigation of the

flow around an isolated airfoil in a contracting or diverging stream is

presented in Ref. 13. This analysis provides a simple method of modi-

fying the two-dimensional Douglas-Neumann flow solutions to account for

the three-dimensional effect of the converging or diverging streamlines.

An expression for static pressure coefficient on the airfoil surface is

derived as a function of channel slope, two-dimensional static pressure

coefficient, and the Fourier coefficients of the blade profile. The

analysis utilizes thin airfoil theory approximations and assumes that

thickness effects are the same as in plane flow. The mean flow is

assumed to be inviscid, steady, and incompressible, and the variation

of channel height is assumed to vary linearly from leading to trailing

edge while the length of the contracting section is assumed to be the

same as the axial projection of the blade. In the present application,

the expression for static pressure coefficient has been modified in an

attempt to represent the flow about a row of two-dimensional infinite

cascades. This quasi-three-dimensional approach has been applied to

the two-dimensional results obtained from the Douglas-Neumann analysis

for the Penn State inducer. The effect of the converging channel as

determined by the above analysis on the Neumann solution for the Penn
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State inducer is essentially to decrease the blade static pressure

near the trailing edge.

A comparison of the radial variation of axial and tangential

velocities calculated by the above method with the experimental results

of Ref. 20 shows close agreement (Fig. 4). The agreement between the

measured tangential velocity and inviscid prediction may be fortuitious,

since the axial velocity predicted at the same location is considerably

different from the measured values.

Using the input parameters of velocity and pressure derived from

the preceeding analysis results in a lower total RMS (root mean square)

residual than with the previous method of initializing the input

variables. As an example, the final RMS residual for the inviscid

results of Ref. 20 was 0.12450 after 68 relaxation cycles, whereas a

similar value is obtained using the present analysis in 10 relaxation

cycles. This amounts to a considerable saving in computer time..

Twenty-five iteration cycles has reduced the RMS residual to 0.10579,

indicating that a faster convergence to the solution should be possible.

Further investigation should be carried out to confirm the effectiveness

of the input analysis as an alternative to the Cooper-Bosch approximate

solution method.

In a further attempt to decrease the convergence time, the exit

flow angle was allowed to change depending upon the tangential and axial

velocities calculated at the inducer trailing edge. Since the exact

downstream boundaries are not known in this type of problem, it was

hoped that by allowing the downstream boundaries to adjust themselves

and thereby unload the blade trailing edge, a more exact definition of
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the downstream streamlines would result in lower RMS residuals. Cooper

and Bosch suggest a similar technique as a means of reducing RMS

residuals in their recommendations for future work.

Since the extension of the stagnation stream surfaces downstream

have been constructed to be uniformly periodic with a spacing of 2f/N

(N being the number of blades), the values of velocity and pressure at

the downstream tangential channel boundaries should be equal. This

condition is applied at the blade trailing edge after each iteration

cycle. If the pressure and suction surface parameters differ with each

other at the trailing edge grid point, the average value is used in the

residual calculations.- If the axial and/or tangential velocities at

the trailing edge diverge significantly from the design values during

-1 V
the iteration process, then the flow exit angle, defined by B = tan

at the trailing edge, is recalculated and is used to redefine the down-

stream.stagnation stream surfaces. This method also has the advantage

of automatically forcing the Kutta-Joukowski condition for the blade

pressure distribution to be satisfied. Changes made to the original

Cooper-Bosch program can be seen in Appendix B and are concentrated in

subroutine "MAIN". A flow chart diagram of the Cooper-Bosch program,

including the modification discussed above, is given in Appendix A.

Viscid Analysis

In addition to the attempts to improve the convergence of the

exact inviscid solution, a method of incorporating viscid effects into

the governing equations of motion has also been investigated.
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General Equations andTheoretical Method

The viscid equations of motion are:

r momentum:

1 1 V U U U 1 1 (a rr- )
- -+ +U D +W - - (V + rQ) = - + rz + r;
P r r T 3r az r p r 6 az -r r

(10)

0 momentum:

1 V av av aw uv 1 +6 z 0er 2
S - + +U +W L+ +2QU = + + + --

pr ae r ae ar az r p ra az ar r Or

(11)

z momentum:

au ao T T
1 2+ Va +W aw aw 1 az zz rz rz (12)

+ +U -+W [ + + + --- (12)p az r ae r z p rae az ar r

continuity:

U aU 1 aV aw- + + + = 0 (13)
r ar r ae az

where

a = - V , T = - vW = T

a = - u , = - uW = T
rr rz zr

a W T -VU=T
zz = TOr vu = r

Molecular viscosity terms have been neglected in these equations.
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Comparing these equations with the momentum equations used by Cooper

and Bosch, the following expressions for FR, FT, and FZ (the exact

program variables for viscous loss terms) can be given as:

1aT aT aa rr (a -r8C
)

FR =- [ + + + - +'] (14)
p r z r r

1 r aOz aOr 2

FT =- [ + + + T ] (15)
p rae az ar r Or

1 zO zz rz rz
FZ = - [ + - + - + -] (16)

p rae az ar r

Since the stagger angle is very large, these viscous terms can be

approximated by retaining the dominant terms as well as neglecting the

normal shear stresses, resulting in:

FR rz (17)

FT = z (18)
p az

1 zO
FZ = (19)

p rDe

The distribution of shear stress is assumed to be linear across

the flow passage from pressure surface to suction surface. The values

of wall shear stresses are assumed to be known from previous experi-

mentation. Skin friction coefficient Cf for a four-blade flat plate

helical channel is given in Ref. 2. The results, summarized in Fig. 5,

are considered to be valid for the three-blade inducer under considera-

tion. Interpolation of the curves in Fig. 5 for a given blade surface
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grid location under consideration gives a value of wall shear stress

1 -2 '--r/V of the
Tw = Cf 2 for the appropriate Reynolds number Re= *r/v of the

flow at that point, where -R is the average relative velocity across

the flow passage as derived by the Cooper-Bosch relaxation procedure.

Calculation of T at each grid location within the flow passage allows

the derivatives of equations 17-19 to be calculated by finite-difference

methods.

An additional requirement placed on the viscid analysis is to

satisfy the viscid boundary condition which requires that all components

of velocity are zero at the blade surface.

The changes to the original Cooper and Bosch exact program

necessitated by the inclusion of the viscous loss terms are made in

subroutines "MAIN", "DLOSS" and "RESID". Flow chart diagrams for the

modified subroutines of the Cooper-Bosch program are given in Appendix

A. A complete Fortran listing of the modified Cooper-Bosch program is

given in Appendix B.

Input and Solution

The input variables and formats for the modified viscid analysis

program are identical to the original Cooper-Bosch program, with the

exception of including a set of curves to define blade skin friction

coefficient (Cf) vs. Reynolds number (Re) for various reference

tangential locations throughout the inducer channel. Input values are

taken from log-log plots similar to that shown in Fig. 5. Straight line

approximations for the reference data are required. A definition for

each of the additional input quantities follows. For the exact format
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in which these parameters must be coded, consult the program Fortran

listing in Appendix B.

NCURVE: Number of Cf vs. Re reference curves used as input. Each

curve must correspond to a specific blade tangential

location. Maximum of 3, minimum of 2.

THETA(I): Tangential location, in degrees from leading edge, where

a specific Cf vs.R e curve applies. The array index (I)

increases from 1 to NCURVE, proceeding from leading edge

to trailing edge.

REREFl(I),

REREF2(I): Minimum and maximum values respectively of Re used in

straight line approximation of Cf vs. Re curve.

CFREFP(1,I),

CFREFP(2,I): Cf values corresponding to REREFl(I) and REREF2(I)

respectively on the blade pressure surface.

CFREFS(1,I),

CFREFS(2,I): Cf values corresponding to REREFl(I) and REREF2(I)

respectively on the blade suction surface.
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The viscid modifications which have been discussed are activated

in the computer program when the appropriate value of fluid kinematic

viscosity is used as an input parameter. If zero viscosity is coded, the

modified program will automatically revert to an inviscid analysis as

represented in the original Cooper-Bosch program. Preliminary running

of the modified viscid program indicates an increase in computer time of

approximately two to three times more than a corresponding inviscid

analysis run. This increase in computation time is due to the calculation

of the viscous loss terms FR, FT and FZ at each grid point location

throughout the duration of one relaxation cycle, which may involve

several thousand iterations of the flow parameters in order to reduce

the RMS residual from the previous cycle. The efficiency of the computer

programming can certainly be improved upon in future study.

Comparison of the results of the Cooper-Bosch inviscid and viscid

analyses and their relationship to experimental measurements are

discussed in a later chapter.
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EXPERIMENTAL EQUIPMENT, METHODS AND TECHNIQUES

The primary goal of performing the following experimental program

was to investigate the flow characteristics such as velocity, turbulence

characteristics and static pressure of the relative flow inside a three-

bladed inducer. The importance of this experimental data for a better

understanding and prediction of the flow has been mentioned in the

introduction.

A secondary goal was the determination of the effectiveness of the

triaxial rotating hotwire as a method of measuring mean and fluctuating

velocities and turbulence stresses within the inducer blade passage.

Three-Bladed Inducer

The experimental investigation was performed on a three-foot

diameter axial flow inducer with three equally spaced blades. The test

facility is pictured in Fig. la. Design of the blades is by the mean

streamline method of Wislicenus (Ref. 25). The inducer was operated at

450 rpm, which was determined to an accuracy of 0.1 rpm by means of a

photocell circuit with rotating calibrated disk and displayed on an

electronic counter. Important parameters of the inducer are as follows:

Number of Blades 3

Hub/Tip Ratio at Outlet 0.50

Hub/Tip Ratio at Inlet 0.25

Radial Clearance 0.0625"

Inlet Flow Coefficient (Design) 0.065

Blade Chord at r/rt = 1.0 82.96"

Blade Chord at r/rt = 0.75 63.18"



32

Blade Chord at r/rt = 0.50 49.94"

Solidity at r/rt = 1.0 2.15

Solidity at r/rt = 0.75 2.21

Solidity at r/rt = 0.50 2.61

Reynolds Number Based on Tip Radius 7.0 x 105

The design values of blade and flow angles at inducer inlet and exit

are given in Fig. lb.

The use of the three-bladed inducer for the continued experimental

investigation defined in this report is a result of conclusions reached

by prior investigations described in Ref. 20; namely, it has appreciably

better performance than a similar four-bladed inducer tested at the same

flow coefficient.

Blade static pressure measurements were obtained with the use of

hypodermic steel tubing of .063" ID imbedded in the blade at ten

separate pressure and suction surface locations. The pressure measure-

ments at each location were carried out at five radial stations by

utilizing .063" diameter taps drilled at equally-spaced intervals from

tip to hub. The approximate radial locations of the pressure taps are

shown in Fig. 3 and the actual experimental radial and chordwise locations

of the pressure taps are given in Table 1 and Table 2 respectively.

Velocity and turbulence measurement stations within the blade

passage have been previously used (Ref. 20) and were constructed by

cutting tangential slots in the hub wall at the locations shown in

Fig. 3.

The inducer was statically and dynamically balanced at facilities

in the Garfield Thomas Water Tunnel of The Pennsylvania State

University.
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Table 1. Radial Location of Blade Static

Pressure Measurement Stations*

Tangential Radial Measurement Station
Measurement
Station 1 2 3 4 5

1 .291 .466 .644 .815 .985

2 .295 .466 .637 .808 .985

3 .322 .479 .654 .819 .985

® 4 .342 .500 .664 .823 .985

5 .356 .514 .671 .823 .985

6 .370 .521 .678 .829 .985

7 .390 .541 .689 .835 .985

8 .411 .555 .699 .842 .985

9 .438 .575 .719 .849 .985

10 .473 .609 .726 .863 .985

1 .288 .466 .640 .815 .985

2 .301 .479 .644 .823 .985

3 .322 .486 .658 .823 .985

4 .342 .500 .664 .823 .985

5 .356 .514 .671 .829 .985

6 .370 .527 .678 .835 .985

o" 7 .390 .541 .685 .835 .985

8 .397 .548 .692 .835 .985

9 .425 .555 .699 .835 .980

10 .435 .561 .692 .842 .983

*Radial locations nondimensionalized as r/rt .
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Table 2. Chordwise Location of Blade Static

Pressure Measurement Stations*

Tangential Radial Measurement Station
Measurement
Station 1 2 3 4 5

1 11.3 8.9 6.5 5.7 4.9

2 15.5 14.3 13.0 12.0 11.0

3 24.0 24.0 24.0 23.8 23.5

4 34.0 36.0 38.0 38.0 38.0

4 5 44.0 48.0 52.0 52.3 52.5

o 6 51.0 55.5 60.0 60.5 61.0

7 58.0 63.0 68.0 69.0 70.0

8 66.0 72.0 78.0 78.5 79.0

9 74.0 80.0 86.0 86.5 87.0

10 82.0 88.0 94.0 95.0 96.0

1 15.0 13.3 11.5 11.0 10.4

2 19.5 18.9 18.2 17.6 17.0

3 28.4 29.2 30.0 30.0 30.0

4 45.0 47.5 50.0 50.5 51.0

C 5 54.0 57.0 60.0 61.0 62.0

6 62.0 66.0 70.0 70.8 71.5

-" 7 69.0 73.5 78.0 78.5 79.0

S 8 75.0 80.5 86.0 86.0 86.0

9 81.0 86.5 92.0 92.3 92.5

10 85.0 91.0 97.0 97.0 97.0

*Chordwise locations are expressed as percent chord from blade leading
edge.
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Blade Static Pressure Measurement

An extensive experimental investigation of the blade static

pressure distribution has been undertaken to help provide a check on

prior theoretical analyses and useful information for future theoretical

development.

Equipment Used

A schematic diagram of the blade static pressure test setup is

shown in Fig. 6. The equipment used to measure the blade static

pressure distribution of the three-bladed inducer is as follows:

Scanivalve.- The scanivalve, a scanning type pressure sampling

valve for measuring multiple pressures, was mounted in the rotating hub

section of the inducer. The scanivalve incorporates a fluid wafer

switch for time-sharing one pressure lead with up to twenty-four (24)

unknown pressures, and is stepped by a rachet-geared solenoid. A

solenoid controller used push button pulse length feedback and increased

drawing voltage to step the solenoid driven scanivalve. The controller

was equipped with a 24-division indicator dial which allowed monitoring

of the static pressure station under consideration.

Three Channel Pressure Transfer Device (PTD).- A 3-channel pressure

transfer device was used to transfer the static pressure measurements

from the rotating reference frame of the three-bladed inducer to the

stationary reference frame. Each channel was made airtight by the use

of double-sealed ball bearings, and pressure leakage was prevented by

use of 0-rings and plastic sealers. The PTD was mounted on a stand
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outside the rotor assembly and was housed in a streamlined cowling to

reduce any interference on the incoming flow.

Slip-Ring Unit.- An eight-channel slip-ring unit was used to

conduct electrical signals from the stationary reference frame to the

rotating reference frame of the scanivalve. Electrical continuity was

provided by carbon brushes in contact with a rotating commutator aligned

along the inducer's rotational axis. The slip-ring unit was mounted on

the pressure transfer device, and all electrical and pressure connections

were transferred through a hollow shaft and flexible couplings to the

nose cone of the inducer.

Peripheral Equipment.- A transistorized 30 volt D.C. power supply

was used to provide voltage to the scanivalve and solenoid controller

units. A micromanometer graduated in 0.001" divisions was used to

measure the blade static pressure.

Procedures and Techniques

Flexible vinyl tubing of 0.063" inside diameter was used to connect

the ten suction and ten pressure surface stations to the available tubes

on the scanivalve. The vinyl tubing was also used to connect the

collection tubulation of the scanivalve to the measurement channel of

the pressure transfer device. The manometer was similarly joined to this

channel. Electrical connections from the scanivalve were transferred

through the slip-ring unit to the solenoid controller and power supply.

The blade static pressure measurement test setup is shown in Fig. 7.
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Masking tape was used to cover the radial pressure taps not under

consideration in a particular run.

Once the inducer speed was adjusted to 450 rpm, the static pressures

associated with the ten pressure and ten suction surface stations at a

particular radial passage location could be measured by stepping the

scanivalve through its range of operation. The dial on the solenoid

controller would indicate which station pressure was being measured.

Each step provided the blade static pressure of a different chordwise

station. Pressure readings were measured on the micromanometer to an

accuracy of 0.001".

Since the blade static pressure measurements were taken on the

rotating blade, it was necessary to apply a centrifugal force correction

to obtain the static head. If h is the height of the water column
m

measured by the manometer, the actual static head is given by

Pm 2 2 2
h =-- h + - (r - r (20)

P m 2go o

where pm is the density of the manometer liquid, ro is the radius of the

rotating shaft used in the pressure transfer device, and r is the radius

of the static pressure tap under consideration.

From this, the blade static pressure coefficient is defined by

2g h

s 2 (21)
Ub

and is calculated for all pressure measurement stations.
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Blade Limiting Streamline Angle Measurement

The measurement of the blade limiting streamline angle (a), which

is the limiting position of the streamline as the blade surface is

approached, is a further attempt to define the flow phenomena within the

blade boundary layer, including nature and magnitude of the radial flows

and the direction of the wall shear stress. The information gained will

help establish the extent of three-dimensionality in the inducer flow

and will be valuable in developing a viscid theory for the prediction of

rotating boundary layer characteristics.

Equipment, Procedures and Techniques

The blade measurement stations are identical to those used for the

blade static pressure measurements of the previous section. The method

and equipment for measurement are essentially the same as that used in

Ref. 10. An ammonia transfer device (ATD) was placed inside the hub

section along the axis of rotation. For a specific blade measurement

station, the .063" flexible vinyl tubing associated with that location

was attached to the ATD. Likewise, a thin strip of ozalid paper was

attached radially on the blade surface adjacent to the measurement

station,

Once the inducer had been rotated to the required 450 rpm, a small

amount of ammonia gas was injected at low mass flow rate into the ATD

and allowed to penetrate through the radial taps on the blade. The

resulting ammonia trace on the ozalid paper was then measured to deter-

mine the limiting streamline angle. This procedure was repeated for all

measurement stations.
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Three-Sensor Rotating Hotwire Measurement

Initial feasibility investigation into the use of the hotwire

anemometer in the rotating flow passage of the three-blade Penn State

inducer has been mentioned in Ref. 2. One problem experienced had been

the inability of the relatively crude slip-ring unit to maintain the

continuity of the hotwire circuitry. It did not allow suitable operation

of the hotwire for extended periods of time to allow meaningful measure-

ments to be obtained. The present study was an attempt to improve upon

the accuracy and longevity of the initial investigation and prove the

suitability of hotwires in the measurement of the relative mean and

fluctuating velocities in a rotating environment.

Equipment Used

A schematic diagram of the rotating hotwire test setup is given

in Fig. 8. A detailed description of the equipment used in the measure-

ment of the relative mean and fluctuating velocities within the rotating

passage of the three-bladed inducer follows:

Triple-Sensor Hotwire Probe.- A subminiature triaxial probe

designed for boundary layer flows was used in the experimentation (Fig.

9). The wire is 3pm diameter copper plated tungsten with a length/

diameter ratio of approximately 300. The probe was attached to a

specifically designed probe support for use in traversing the inducer

flow passage (Fig. 10a).
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Three-Channel Constant Temperature Hotwire Anemometer.- Two dual-

channel constant temperature hotwire anemometers were used to provide

the three-channel capability necessary for these measurements. The

original anemometer circuitry has been given in Ref. 20 and is not

reproduced here.

Mercury Slip-Ring Unit.- A ten-channel mercury slip-ring unit was

utilized in transmitting the hotwire signals from the rotating reference

frame of the inducer to the stationary hotwire anemometers. The slip-

ring unit exhibits the smallest and most stable resistance in the

transfer of measuring signals from the rotating electrical elements to

the stationary electrical conductors. Contact between the rotating

wires and the stationary contact screws is made through a round contact

disc to which the rotating wire is connected, rotating in mercury.

Triple-distilled mercury was used to provide the greatest conductivity

and the lowest noise level distortion possible.

Peripheral Equipment.- The A.C. voltage signals obtained from the

hotwire anemometer were visualized on a four-channel storage oscilloscope.

Instantaneous mean velocity D.C. voltage readings from the anemometers

were displayed on a digital voltmeter.

The fluctuating voltage (A.C.) signals were processed through a 5.0

KHZ low-pass filter driven by a 15-volt regulated power supply, which

was used to cut off the high frequency noise which may have entered the

circuit.

Mean-square values of the A.C. voltages were obtained by passing

the signals through a true RMS voltmeter and subsequently through a

manually controlled signal integrator. The mean-squared voltage was

displayed on a digital voltmeter.
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A sum-and-difference circuit was utilized to obtain the sum and

difference between the three hotwire signals needed for the turbulence

intensity calculations.

A signal generator was used for sinewave generation to determine

gains throughout the hotwire circuitry and the accuracy of the

associated peripheral equipment.

Calibration Equipment.- A low-turbulence calibration tunnel was

used for the hotwire calibration. The horizontal wind tunnel has a

test cross-section of 1-1/2" x 1-1/2" and operates within the range of

air velocities of 0 to 300 feet per second. The calibration velocities

were measured with a nonshielded pitot tube and the micromanometer

described previously.

Procedures and Techniques

Measurements were taken at two axial stations, corresponding to

approximately 33% and 90% of the blade chord (Fig. 3). Various

velocity measurements have previously been performed at these stations

(Ref. 20) and thus a comparison of hotwire experimental results with

these prior investigations are possible.

Six radial stations (corresponding to r/rt values of .973, .945,

.890, .781, .671, .548) at station 1 and five radial stations (r/rt

locations of .973, .945, .890, .781, .671) at station 2 were traversed

at several tangential intervals within the blade passage in an attempt

to get an accurate and detailed appraisal of the flow velocities,
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turbulence intensities and stresses in these regions. It was not

possible, however, to obtain measurements extremely close to the blade

surfaces due to the limitations caused by the blade curvature.

The three-sensor probe was attached to a ten-inch section of

aluminum tubing and fixed in a particular radial and tangential location

by a coupling mounted in the inducer hub (Fig. 10b). The probe was

accurately aligned in the tangential direction with the aid of the guide

vane attached to the probe's adjustable protection pin. Orientation of

the three individual hotwires was measured with respect to the (R, 8, Z)

coordinate system (Fig. 9) by utilizing a linearly-calibrated scale eye-

piece in a 30-X microscope. The direction cosines of this orientation

were then calculated, as were direction cosines of the two arbitrary

normals to each wire (Table 3). These values were used in the governing

hotwire equations derived in the next chapter.

The experimental setup for the hotwire measurements is shown in

Fig. 11. With the probe in position, the inducer was started and

rotated to 450 rpm. The corresponding mean D.C. voltages of the three

hotwire channels E1, E2, E3 were recorded, in addition to the statistical

properties of the fluctuating voltages

2 2 2 2 2
el , e2 , e3 , (el + e2) , (el - e2) '

2 2 ) and2
(el + e 23 , (e1 - e3) 

2 , (e2 + e 2 and (e2 - e3 2

The time-averaged voltages were obtained over an integration of 100

seconds. The inducer was then stopped, the probe was moved to another

location, and the procedure repeated until the flow field was entirely



Table 3. Direction Cosines Used in Hotwire Analysis

Angle Hotwire 1 Hotwire 2 Hotwire 3Orientation
(Fig. 9 and Angle Direction Angle Direction Angle Direction
Eqns. 22-24) (degrees) Cosine (degrees) Cosine (degrees) Cosine

AX-O a1 1170 24.5' -.46034 1200 59.2' -.51486 1300 26.5' -.64865

AX-R b 1280 53' -.62773 490 56.5' .64357 940 39' -.08108

AX-Z c1  510 07' .62773 550 30.5' .56634 1390 21.5' -.75676

N1-8 a2 900 0 900 0 90°  0

N1-R b2  450 .70711 480 39.1' .66063 1730 53' -.99431

N1-Z c2  450 .70711 1380 39.1' -.75071 830 53' .10653

N2-6 a3  1520 35.5' -.88775 1490 00.8' -.85728 1390 33.5' -.76109

N2-R b3  710 00.2' .32551 1120 44.5' -.38651 860 02.3' .06910

N2-Z c3  1080 59.8' -.32551 1090 53.1' -.34013 490 50.5' .64496

00



JIM

Figure 11. Rotating Hotwire Test Setup
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surveyed. Station 1 and Station 2 were surveyed similarly, expect that

no turbulence measurements were recorded at station 1.

The resultant voltage measurements from the three-channel rotating

hotwire experiment were converted to mean velocities U, V, W and

turbulence quantities u , v w , uv, uw, vw from the appropriate cali-

bration curves and the applicable equations derived from the analysis

of the next chapter.

The data reduction was accomplished in a computer program written

to solve, for all flow stations considered, the resulting three

simultaneous mean velocity equations and six simultaneous turbulence

velocity equations. The high speed digital computer at the Penn State

Computation Center was used in this task.
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DERIVATION OF THE HOTWIRE EQUATIONS

The derivation of the equations for the three sensor-hotwire is a

completely general method and is based on the hotwire configuration

shown in Fig. 9.

Direction Cosine Method for Nonorthogonal Probes

Consider one hotwire sensor with respect to the (R, 0, Z) coordinate

system. Hotwire (1) has an orthogonal coordinate system (AX, Nl, N2)

associated with its orientation. This (AX, Nl, N2) coordinate system

can be transformed to the (R, 0, Z) coordinate system by:

(Q + q)ax = al (V + v) + b1 ( U + u) + cI (W + w) (22)

(Q + q)nl = a2 (V + v) + b 2 (U + u) + c2 (W + w) (23)

(Q + q)n 2 = a3 (V + v) + b3 (U + u) + c3 (W + w) (24)

where Qax' On1 and Qn2 are the mean velocities associated with the

(AX, Nl, N2) coordinate system and U, V and W are the transformed mean

velocities in the (R, 0, Z) coordinate system. q, u, v, w are the

fluctuating components. The coefficients al, bl, cl, etc. are the

applicable direction cosines between (AX, Nl, N2) and (R, 0, Z). The

specific direction cosines for the triaxial hotwire probe used in the

experimental studies of this thesis are given in Table 3.

The effective cooling velocity sensed by hotwire (1) is known

(Ref. 22) to be:
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2 2 2 1/2

(Q + [(Q + q)q) + ( Q + q)n2 + +1 q)ax ] / 2  (25)

where K1 is the associated correction factor for deviation from the

cosine law.

Substituting equations 22-24 into equation 25 and expanding the

resulting expression to reflect the instantaneous velocity components

as the sum of the mean (Q1, U, V, W) and fluctuating (ql, u, v, w)

velocity components, we get:

2 2 2 2
Q1+ = [a4 (V + v + 2Vv) + b4(U + u + 2Uu)

2 2+ c4 (W +w + 2Ww) + d4 (UV + uv + Uv + Vu)

+ e4 (VW + vw + Vw + Wv)

+ f 4 (UW + uw + Uw + Wu)]1/2 (26)

where the constant coefficients are defined as

2 2 2 2
a = a2  + a3  + K1 a1

b = b + b + K12 b12

2 2 2 2
c4 = c2  + c3  + K1 c1

d = 2 (a 2 b 2 + a3b 3 + K 2albl)
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e4 = 2 (a2c2 + a3c3 + K1 2alc1)

f4 = 2 (b2c2 + b3c3 + K1 2blc 1)

The right side of equation 26 can be linearized by

(1 + A)1 / 2 = 1 + A/2 - A2/8 + . . . (27)

where A is considered small. Thus, equation 26 can be approximated to

the following expression:

+ q1  = a5 (V + v) + a6 (U + u) + a7 (W + w)

2 2 2 2
Su W w UW uw

+a8(--+ --) + a(--+ -) + alO 10(- V

Uu Ww Uw Wu
+ a V 12 V +  13 (-- + ) + 0(E) (28)

where the constant coefficients are defined by

a5 = a4

a6 = d4/2 / a4

a7 = e4 /2 / a4

4 4

c e

a8 = 2a 4 4 8

9 4 2a 8(j. ) 2]a9  a4 [41 4)2]

f d e
a10 / a4 2a 1 444 a4 a
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b d
a =[4 L ;4 2
11  4 a4  4 a

4 4 2

a12 4 a 4 a
4 4

a1 3 = al0

Taking the time-average of equation 28, we get:

2  2

Q = a5V + a6U + a7W + a(-- +  -)

W2  UW uw
+ a9(--+ -) + al0 ( -- ) (29)

then the equation for the mean velocity sensed by the hotwire can be

approximated by:

U2  W2  UW
Q1 = a5V + a6U + a7W + a8 -- + a9 v-- + al0 V- (30)

The difference between equations 28 and 29 is the fluctuating

velocity sensed by the hotwire:

2 2
u u

q1 = a5v + a6u + a7w + a8 (V V

2 2
a w + a 0  uw - uw + Uu
9 V 10 V V 11 V

Ww Uw Wu
+ 12 a13 ( + (31)



55

Expressions similar to equations 30 and 31 for Q2' Q3 q2 and q3

corresponding to the mean and fluctuating velocities sensed by hotwires

(2) and (3) can be derived.

Relating Voltages and Velocities

Application of King's Law (Ref, 6) for hotwire (1) relates

instantaneous velocity (= Q1 + ql) and instantaneous voltage (= E1 + el)

by the expression

2 2
(E1 + el) = Eo + B1 Q1 + (32)

where B1 is the slope of the hotwire calibration curve, Eo is the hot-

wire voltage at zero velocity, E1 is the mean voltage and el is the

fluctuating component.

Expanding and linearizing equation 32 for small ql/Q 1, we get

E12 + 2Eel+ el2 =E + / ( + ql/ - (33)_

The time-average of equation 33 relates the mean velocities and

voltages. Neglecting el , we find

2 2
E1  E 0  +B 1 V, Q, (34)

Subtracting equation 34 from equation 33 and neglecting e2 , then

B1  (35)2Ele I - (35)
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or

4 E1 / " Q

ql = (  B1  ) el (36)

Similar expressions can be derived for hotwires (2) and (3). Rewriting

equation 36 as q1 = Llel, the time-averaged fluctuating quantities can

be found to be

ql = L12 e 2  q2 = L1L 2 ele 2

2 2 2
q 2 = L2  2 and q1 3 = L1L3 ele 3  (37)

2 2 2
q3 = L3 e3  23 = L2L3 e23

2 2 2

The values of el , e2  and e3  are obtained directly from the experi-

mental hotwire measurements. The values of e 1e2, e 1e3 and e2e3 are

derived as follows:

1 2 2
ele2 4= [(el + e2 ) - (el - e2 )

- 1 2 2e l e3 = [(el + e3) (e - e 3 )  (38)

S1 2
e2e3  4- [(e2 

+ e3) (e2 - e3)

The mean-squared voltages within the brackets are obtained by

utilizing the sum-and-difference circuit in the experimental hotwire

measurement (Fig. 8).
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Mean Velocity Calculation

Equation 30 for hotwire sensor (1) and similar equations derived

for sensors (2) and (3) form a set of three nonlinear simultaneous

equations in three unknowns:

U2  W2  UW
Q1 = aV + aU + a7W + a V--+ a9 -- + al0 -- (39)

5 6 7 8V 9V 10

2 2
U2  W UW (40)

Q2 5 6 7 8V 9-- + b9 10 + b (40)

U2  W2  UW
Q = cV + cU + c7W + c -- + c - +c (41)
3  5 6 7  8 V - 9V 10 V

where the coefficients a5 , b5 , etc. reflect the appropriate combination

of direction cosines, K factor, etc.

Values of Q1, Q2 and Q3 are known from application of equation 34

to the D.C. hotwire voltages obtained from the experimental hotwire

measurements. Solution of equations 39-41 thus give U, V and W for each

measurement location considered.

The Newton-Raphson method provides an iterative procedure for

solving a nonlinear system of equations involving n real functions and

n real variables. Details of the method are given in Ref. 3. Applying

this method to the three simultaneous nonlinear equations 39-41, we can

define the expression

U W UW
fl(U, V, W) = a5V + a6U + a7W + a8 --+ a9 --+ al0 V Q (42)

U W UW
f2(U, V, W) = b5V + b6U + b7W + b + b9 --+ bl0 V 2 (43)
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U2 W2  UW
f3(U, V, W) = c5V + c6U + c7W + -- + c9 V-- +  l0 V 3  (44)

After determining the partial derivative expressions

af. af* af.
1 1 1 (45)

i = 1,3

the Newton-Raphson iteration equation can be written:

af 8f 8f1 1 1--- AU + -f AV + * " AW = - f (46)

f 8f af 22 2 2AU + --- V AV + _ AW = - f (47)
aU VW 2

f 8 f af 33 3 3SAU + --- AV + AW = - f (48)U +av a W 3

th
where, for the i iteration,

U. = U. + AU (49)1 i-i

V. = V. + AV (50)1 i-i

W. = Wil + AW (51)

For an initial approximation Uo, Vo and Wo, the initial values of fl, f2

and f3 from equations 42-44 and their associated partial derivatives

(equation 45) can be calculated. From a matrix analysis of equations

46-48, the values of AU, AV and AW can be determined and the values of

Ui , V. and Wi adjusted according to equations 49-51. The above procedure
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is repeated until a suitable convergence criteria is satisfied (i.e.,

until AU, AV and AW are less than some small number e).

Fluctuating Velocities, Turbulence Intensities and Stresses

Equation 31 for hotwire sensor (1) is squared and time-averaged to

give the following expression (neglecting small order terms such as

4 2 2
u , u v , etc.):

2 2 2 2 2 U2 2 W 2 U

1  =a 5  v + [a6  + all() + a13  ( + 2a 6a l l (

W UW 2 2 2 W 2
+ 2a6a3 + 2alla 13  -)] u + [a7  + a1 2V

2 U + 2a7a2 (U UW +2a7a3 ( ]2
" a13 + 7 12 + 2a7a1 3  + 2a1 2a1 3 ()]w

V

+ [2a5a6 + 2a5all () + 2a5a (W uv

+ [2aa 7 + 2a5a12 ( ) + 2aal3  ] v

W U
+ [2a 6a7 + (2a6a12 + 2a a13) V

+ (2a6a13 + 2a7all) V

2 UW U 2 W 2
+ (2alla + 2a13  + 2a a3 - 2a2a a u + 0()

V

(52)

Similar equations for q22 and q32 can be derived for hotwire sensors

(2) and (3).
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Likewise, equation 31 can be multiplied by the corresponding

expression for q2 and time-averaged to obtain:

2 U 2 W 2
ql q2 = ab 5 V + [a 6 b6 + allbll ()2 + a 1 3 b 13 (

U bW 2

+ [a b + ab (D + a1 3b1 3 (- + (a7b + alb 7)  )

U UW 2a
+ (a 7 b 1 3 + a 1 3 b7 9- + (a 1 2 b 1 3 + a 1 3 b 1 2 ) ] w + [a5b6 + a 6 b 5

U W
+ (a5b + allb5 -+ (a6bl2 + a12b5) V] uv + [a5b7 + a7b 5

W U
+ (ab12 + a 1 2 b -+ (abl3 + ab5 vw + [a 6 b 7 + a7b 6V 13 + 7 76

W U
+ (a6bl2 + al2b6 + a7b13 + a13b7) -+ (a6b1 3 + a13b6 + ab +allb7

UW U2

+ (allb 12 + a1 2bll1 + 2a1 3b 13) + (allbl3 + a 3b 11 ) V

W2

+ (a 1 2b 1 3 + a13b12 ) V uw + 0(E) (53)

where the constants bn, n = 5 to 13 refer to the coefficients in the

expression for q2 and are similar to the values of an in equation 28.

Expressions similar to equation 53 can be derived for q1q3 and

q2 3. Thus, the set of equations 52 and 53 form a set of six non-

linear equations in nine unknowns. As an approximate method of solution,

the mean velocities U, V and W are first calculated from equations 39-41
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using the iteration method described in the previous section. These

velocities are then used to calculate the coefficients of equations 52

and 53. As a result, these equations are reduced to six linear equations

in six unknowns which can then be solved simultaneously to give the

quantities u , v , w , uv, uw and vw. A computer program, coded in

Fortran IV and given in Appendix C, has been written to use the hotwire

data obtained from the experimental portion of this thesis to solve

equations 39-41, 52 and 53 for the mean velocities, turbulence intensities

and stresses respectively. The results are presented in the next

chapter.
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EXPERIMENTAL RESULTS AND COMPARISON WITH THEORY

Results of the experimental investigations are given in this

chapter. In addition, comparison of these results with the theoretical

results of the inviscid and viscid exact analysis programs are

presented.

Blade Static Pressure

Experimental results are plotted in Figs. 12-16 for the five

radial passage stations defined previously. It should be reiterated

that the measurement stations do not correspond to constant radii, since

the annulus passage is continuously varying. The measurement stations

are illustrated in Fig. 3 and the pressure tap locations are

specified in Tables 1 and 2.

The inducer design characteristic of trailing edge loaded blades is

apparent from the measured is distributions. 1s measurements on the

blade pressure surface remain positive across the entire chord length,

with the gradient increasing continuously from hub to tip. The pressure

surface s distribution decreases near the trailing edge, varying in the

location at which the downswing begins from approximately 80% chord near

the tip to greater than 90% chord near the hub. The blade suction

surface s measurements near the hub leading edge begin negative and

become positive beyond 35% chord. At radial stations 3 thru 5, corres-

ponding to mid-passage thru tip, the suction surface ts distribution

appears to begin with positive values,.cross to negative values at

approximately 20-30% chord and then return to positive values at 40-55%

chord. The cross-over points increase in distance from the leading edge
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Figure 12. Blade Static Pressure Distribution - Radial Station 1
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Figure 13. Blade Static Pressure Distribution - Radial Station 2
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Figure 14. Blade Static Pressure Distribution - Radial Station 3
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Figure 15. Blade Static Pressure Distribution - Radial Station 4
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Figure 16. Blade Static Pressure Distribution - Radial Station 5



68

at the radial stations nearer the tip. It is also noted that the

difference between the pressure surface *s and suction surface *s at

most chordwise locations increases continuously from hub to tip.

It is apparent from Figs. 12-16 that there is a large discrepancy

between the experimental and design curves. The design curves are based

on two-dimensional theory and are derived from the mean streamline

method of Wislicenus (Ref. 25). The experimental results indicate that

the three-dimensional inviscid effects are appreciable.

The radial variation of the passage-averaged blade static pressure

coefficients are compared in Figs. 17a-b for axial flow survey stations

1 and 2 (shown in Fig. 3). It can be seen that, for both locations, the

discrepancy between design and experiment is greater near the tip,

indicating the presence of velocity deficiencies resulting..from increased

flow losses in this region., At station 1, the difference between the

design and experimental curves does not appear to increase until

approximately R = .8, whereas at station 2, the difference begins

increasing at a radius much closer to the hub. This tends to indicate

an increase in the extent of the loss region as the flow moves downstream

through the inducer passage.

Blade Limiting Streamline Angles

The blade limiting streamline angle a is the limiting position (in

degrees) of the flow streamline as the blade surface is approached

(Fig. 2). The angle is measured from the two-dimensional or design

flow direction and hence represents the extent of three-dimensionality

in the flow. A similar parameter E = tan a can also be defined which,

in the peculiar geometry of the inducer, can approximate the ratio U/V
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at the blade surface. The tangential variation of a with blade chord

for each of the five radial measurement stations is shown for the

pressure surface in Fig. 18 and for the suction surface in Fig. 19.

The pressure surface distribution of a at the tip (radial station

5) indicates negative values of a (and, thus, radially inward flow) from

leading edge to mid-chord position. This tends to indicate the presence

of the annulus wall boundary layer scraping effect which induces flow

away from the tip. At.all other radial stations, a increases

continuously from leading edge to trailing edge. Near the hub trailing

edge, a increases quite rapidly. The blade limiting streamline angles

at both radial stations 1 and 2 appear to extrapolate beyond 900, which

is an indication of the existence of backflow in this region. This is

presumably brought about by large radially outward flow that exists in

the wake immediately downstream of the trailing edge. This has a

tendency to decrease axial velocity near the hub and thus induce back-

flows. At most axial locations, a decreases continuously from hub to

tip. In several instances, this decrease appears linear.

The suction surface a distribution remains relatively constant at

all radial stations up to approximately 60% chord from the leading edge,

when a more pronounced increase is noticed. At all stations except the

tip, this increase extends to approximately 85% chord and then a

decreases toward the trailing edge. This is possibly due to the blade

blockage effect in this region.. At the tip, a increases continuously

and no decrease.is noted. Again, as in the pressure surface distribution,

a decreases continuously from hub to tip at practically all axial

locations, and at some locations the variation appears linear.
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In most instances, the magnitudes of a on the suction surface are

lower than at the corresponding position on the pressure surface.; Fig.

20 shows the radial variation of a at the trailing edge.. The deviation

between pressure and suction surface measurements decrease continuously

with increasing radius from hub to tip. The magnitude of a, which is

an indication of the extent of radial flows, is much higher than-the

values of a single blade reported in Ref. 14. This indicates that the

radial velocity in the inducers are quite appreciable, especially near

the blade surfaces.

Mean Velocity Profiles

The triaxial hotwire probe was used to measure the relative

velocity profiles inside the inducer passage. As an indication of the

effectiveness of this method in obtaining the relative velocity measure-

ments, Fig. 21 compares the total relative velocity profile at station 1

derived from the hotwire measurements with the results of Ref. 7 obtained

from rotating pressure probe measurements. Good agreement is indicated

at the two radii shown.

The axial, radial and relative tangential velocity components

described in this section are derived from the hotwire measurements and

analysis described in the previous chapter.

Measurements at Station 1

Total Relative Velocity.- Fig. 22 shows the tangential variation

of total relative velocity QR across the inducer passage at several
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radii. A distinct velocity deficiency is noted at approximately 55%

from the blade suction surface for all radial stations, but it is

especially pronounced near the tip. This is the region of maximum loss.

The radial flows inside the pressure and suction surface boundary

layers, when encountered by the annulus wall, tend to roll toward mid-

passage, interact, and produce strong vortices and radially inward

flows. This interaction region is an area of considerable flow mixing,

resulting in strong eddies and the associated energy dissipation. A

concentration of high turbulence intensities in this region is confirmed.

by qualitative measurement of the A. C. fluctuating hotwire voltages.

The radial variation of passage-averaged total relative velocity is

plotted in 'Fig. 23. The difference between the design and experi-

mental curves increases near the tip, further substantiating the

existence of three-dimensional effects and flow loss in this region.

The degradation in flow velocity near the tip also explains the

behavior of the s: variation in Fig. 17a.
s

From the velocity profiles of Fig. 22, it is easy to discern the

suction surface boundary layer at radii above R = .671. The suction

surface boundary layer appears to grow in thickness as the tip is

approached, increasing to approximately 25% of the passage width. This

observation is consistent with the previous discussion about tip

boundary layer interaction. No evidence of the pressure surface

boundary layer can be detected in Fig. 22. This tends to indicate

that the suction surface boundary.layer is thicker than that of the

pressure surface, although it should be remarked that no measurements

were taken close to the blade surface. Since the blade element is not

radial, the hotwire probe could not be located very close to the blade
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surface while also assuring the correct orientation necessary for the

data analysis described in the previous chapter.

Relative Tangential Velocity.- Fig. 24 shows the passage

variation of relative tangential velocity V at the several radii. The

magnitude and shape of these curves are almost identical to the total

relative velocity curves of Fig. 22, indicating the dominance of the

tangential flow within the inducer passage. Comments concerning the

total relative velocity are also applicable here. Fig. 25 is a plot

of the radial variation of passage-averaged relative tangential velocity

and indicates the region of large flow loss that exists near the tip.

The absolute tangential velocity can be derived from

CO = R Q - V (54)

The high values of absolute tangential velocity near the tip indicates

that the absolute stagnation pressure rise in this region is very large.

This large absolute stagnation pressure rise is not due to flow turning

but to the effects of complex viscous interactions.

Axial Velocity.- Fig. 26 shows axial velocity W plotted versus

percentage of passage width. The general trend for the tangential

variation of axial velocity indicates an increase from suction surface

to pressure surface. The radial variation of the axial velocity shows

the largest values occurring near the hub, decreasing consistently

towards the tip. This tends to indicate the effect of blade blockage

on the axial velocity distribution. It is noted from Fig. 26 that

negative values of W occur at the tip location R = .973. The existence

of negative axial velocities at the extreme tip location indicates the

presence of the annulus wall boundary layer scraping effect and was
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similarly noted by the limiting streamline angle measurements at

this location.

It should be pointed out that the hotwire sensors used in the

experimentation are not capable of distinguishing the direction of a

velocity, only its magnitude. However, through the analysis of the

previous chapter, hotwire equations are derived which assume an R-O-Z

coordinate system and require appropriate direction cosines to the

orientation coordinate system of the hotwire. The resulting system of

equations are solved numerically. It is from the numerical solution

of these equations that negative values for the velocity components can

appear, indicating that the positive axis of that particular velocity

component was actually 1800 from that assumed in the measurement of the

direction cosines. Thus it is possible, with the method derived in the

previous chapter, to determine the magnitude and sense of the velocity

vector measured by the hotwire sensors.

The radial variation of passage-averaged axial velocity is shown in

Fig. 27a. The rapid decrease in axial velocity near the tip is evident.

The validity of the axial velocity distribution can be ascertained by

applying the continuity equation to the experimental results. Using

rt W1 = j p27 Wrdr (55)
rh

where W1 is the uniform axial velocity upstream of the inducer, the

results agree favorably with the design value.

Radial Velocity.- Fig. 28 depicts the tangential variation of

the radial velocity U. Large values of U are found near the suction

surface at radii close to the hub, indicating higher radially outward
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flow in this region. Negative radial velocitigs are found at radii

near the tip (R = .781 and greater), appearing at approximately 45%

passage width.. This is consistent with the previous discussions on

boundary layer interaction and radially inward flow in this region.

The rationale for obtaining negative velocity component values from the

hotwire measurements was given in the previous section. Fig. 29a

shows the radial variation of passage-averaged radial velocity. The

values of U are quite large, indicating the appreciable three-

dimensionality of the inducer flow. The radial velocities are of the

same order of magnitude as the axial velocity. Fig. 29a indicates

that the radial velocities are higher near the hub which confirms the

conclusions of the blade limiting streamline measurements.

Measurements at Station 2

Total Relative Velocity.- The tangential variation of total rela-

tive velocity QR is shown in Fig. 30a for each of the measuring

stations. Again, as in station 1, a region of distinct velocity

deficiency is noted near the tip. The explaination for the velocity

deficiency in this area has been attributed to the large flow losses

encountered as the result of boundary layer interaction and extensive

flow mixing discussed fully in an earlier section. In comparison with

the results of station 1 (Fig. 22), the position of the loss core

appears to have shifted toward the suction surface to approximately

40% passage width. A growth in the dimensions of the eddy

inside the passage is evident as the flow proceeds from station 1 to

station 2.
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The radial variation of passage-averaged total relative velocity

is plotted in Fig. 31. The values of QR are considerably less than

the design values, substantiating the effects of three-dimensionality

on the inducer flow. The difference between the design curve and

experimental results increases noticeably near the tip, further defining

the region of large flow losses discussed previously. Comparison of

Fig. 31 and Fig. 23 confirms the increase in size of the loss core

within the blade passage as the flow proceeds downstream. This

observation is also consistent with the behavior of the is variations

shown in Fig. 17.

The extent of boundary layer growth on both the pressure and

suction surface can be vaguely discerned in Fig. 30a, extending to

approximately 20% passage width on the suction surface and to approxi-

mately 10% passage width or less on the pressure surface.

Relative Tangential Velocity.- Fig. 32a gives the variation of

relative tangential velocity V across the passage width. Deviations

from the total relative velocity profiles of Fig. 30a are slight,

again indicating the dominance of tangential flow within the long,

narrow inducer blade passages. In Fig. 33, the radial variation of

passage-averaged relative tangential velocity is plotted. The region

of large decrease in relative velocity can be easily discerned.

Comments concerning total relative velocity in the previous section are

also applicable here. This plot shows a significant departure from

design values at all radii, the difference increasing rapidly as the

tip is approached. These low relative velocities (or high absolute

velocities) indicate an extremely large absolute stagnation pressure

rise within the region and, thus, are an indication of the extent to
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which complex viscid interactions are taking place. Comparison of

Fig. 33 with Fig. 25 for station 1 clearly demonstrates the increase

in size and severity of the loss core as the flow within the inducer

passage proceeds downstream.

Axial Velocity.- The tangential variation of axial velocity W is

given in Fig. 30b for the various experimental radii. Overall magni-

tudes are, of course, higher than those measured at station 1 (Fig. 26)

due to the converging annulus. Again, as in station 1, the radial

distribution of passage-averaged axial velocity (Fig. 27b) shows larger

values occurring near the hub indicating the continuing presence of the

blade blockage effect. It is interesting to note that the opposite

trend was found in Ref. 20 at locations downstream of the trailing edge

where no blade blockage effects should be present. This implies that

significant changes occur in the axial velocity profile as the flow

leaves the rotating inducer channel and proceeds downstream. These

changes may be responsible, in part, for the backflow region previously

reported in Ref. 10 near the hub trailing edge and confirmed by the

blade limiting streamline angle measurements of this report. Due to

physical restraints, rotating hotwire measurements were not conducted

close enough to the inducer hub to permit detection of backflows near

the hub surface. The decrease in axial velocity near the tip, as shown

in Fig. 27b, indicates the continuing presence of the annulus wall

boundary layer scraping effect. The effect, however, is not as severe

as at station 1 where negative axial velocities were measured (Fig. 27a)

Application of the continuity equation (equation 55) to the experimental

results of Fig. 27b indicates good agreement with the design value.
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An examination of Fig. 30b reveals a well-defined pressure

surface boundary layer at R = .671 and R = .781 which extends approxi-

mately 15% of the passage width. It appears that the boundary layer is

thicker in this region than at the tip locations. Conversely, the

suction surface boundary layer is well-defined near the tip at R = .973

and R = .945, extending approximately 30% of the passage width and

indicating that the suction surface boundary layer increases in thickness

as the tip is approached.

Radial Velocity.- The variation of radial velocity U across the

passage is shown in Fig. 32b. The overall magnitudes appear larger than

at station 1. Thus, the three-dimensional flow effects will be greater

at station 2 and therefore accounts for the greater deviation of the

flow from the two-dimensional design values which has been observed at

this location (Fig. 31). Fig. 32b indicates negative radial velocities

for the radii near the tip at approximately 25% from the suction surface.

The radially inward flow at this location agrees with the previous

discussions on boundary layer interaction and flow mixing which result

in the velocity deficiencies and flow loss experienced in this region.

Fig. 29b shows the radial variation of passage-averaged radial velocity.

The significant radial flows are evident and this reflects the extent of

three-dimensionality in the flow. As in station 1, the radial velocities

are of the same order of magnitude as the axial velocities. Fig. 29b

indicates that the radial velocities are higher near the hub, and

comparison with Fig. 29a confirms the increase in radial velocities as

the flow proceeds from station 1 to station 2. Both of these results

confirm the observations of the blade limiting streamline angle measure-

ments discussed in a previous section.
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It is apparent from the discussions of radial flows at stations 1

and 2 that radial velocities are significant within the inducer passages

and, thus, any serious attempt to predict inducer flows must rely on a

three-dimensional analysis.

Turbulence Intensities and Stresses

The distributions of tangential, axial and radial turbulence

intensities at station 2, nondimensionalized with respect to local

total relative velocity, are shown in isocontour form in Figs. 34, 35,

and 36 respectively. The contours for all three intensity components are

essentially the same, showing a "pocket" or "core" of high turbulence

centered at approximately 40% passage width and R = .890. This coin-

cides with the location of the maximum total relative velocity deficiency

noted in Fig. 30a.. The turbulence intensities are generally higher

than those encountered in stationary passage. The peak intensities occur

in the mixing region near the tip, where the two boundary layers merge

and generate considerable flow mixing. The flow energy dissipated

during this process is responsible for the velocity deficiencies

encountered near the tip region in Fig. 30a. Another concentration of

high turbulence is noted near the hub pressure surface and is an indi-

cation of the proximity to the pressure surface boundary layer. The

radial turbulence intensities /7- are generally higher than those inu

the axial and tangential directions, an indication of the violent

radial motions occurring within the long narrow passages of the inducer.

An isocontour plot of total turbulence energy at station 2,. defined as

2 2 2 2
q = u + v + w (56)
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is given in Fig. 37. It essentially reflects the observations

stated above, indicating high turbulence energy regions near the tip

at approximately 40% passage width and near the hub pressure surface.

It should be remarked that all the measurements reported here were

taken away from the blade surfaces. The maximum turbulence intensities

and stresses are likely to occur near the blade surfaces. High turbu-

lence intensities measured away from the blade surfaces and reported

here reflect the extent of turbulent mixing even near the mid-passage.

The classical assumption that the viscous and turbulence effects are

confined to very thin regions near the blade surfaces is evidently

inapplicable to inducers and hence, a fully three-dimensional treatment

is needed for the prediction of inducer flows.

The distributions of turbulence velocity correlations uv, uw and

uw at station 2, nondimensionalized with respect to QR2, are given in

isocontour form in Figs. 38, 39, and 40 respectively. These

correlations are indicative of the stresses occurring within the

inducer passage. Concentrations in stress intensities are similar to

the turbulence intensity contours discussed previously. The maximum

stresses occur in the mixing region near the tip at approximately 40%

passage width. The radial stresses are by far the most dominant and

emphasize the significant extent of three-dimensionality and complex

viscous interaction occurring within the inducer channel, especially in

the mixing region. As mentioned previously, the stresses shown in

Figs. 38-40 represent values away from the.blade surfaces. Stress

values near the blade surface are likely to be high. The higher stress

values noted near the hub pressure surface in Figs. 38-40 are an indi-

cation of the proximity to the pressure surface boundary layer.
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The distribution of turbulence stress/intensity ratios (uv/q 2

(vw/q 2) and (uw/q 2) are shown in isocontour form in Figs. 41, 42, and

43 respectively. The magnitudes of uv/q2 vary from 0.01 in isolated

points to 0.32 in the high loss mixing region. The contours generally

follow those of uv shown in Fig. 38, with ratios averaging approxi-

mately 0.25 applicable in the regions of higher stress. The values of

-2
vw/q range from 0.01 to 0.12, the higher magnitudes generally

occurring in the high stress areas. The distribution of uw/q2 indi-

cates two regions where the ratios are high, corresponding to approxi-

mately 40% and 65% passage width at R = .890. The magnitudes of

-2
uw/q2 vary from 0.01 to 0.25, the higher values limited to the two

regions defined above.

Comparison of Experimental and Theoretical Results

The Cooper-Bosch exact analysis program incorporating the modifi-

cations mentioned in the chapter entitled "Theoretical Analysis" was

run for the three-bladed Penn State inducer geometry. Both inviscid and

viscid cases were considered. The inviscid program was run for

approximately 75 relaxation cycles, resulting in a total RMS residual

of 0.077. The viscid program was run for approximately 50 cycles and

produced a total RMS residual of 0.200. In this section, the results

of the inviscid and viscid analyses will be discussed and compared with

the experimental results described earlier in this chapter.
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Blade Static Pressure

The inducer blade static pressure distributions derived from the

exact inviscid analysis are plotted in Figs. 12-16. at the locations

corresponding to the experimental s measuring stations., As can be

seen,.the results agree remarkably well at all radial stations and

especially for those near the hub (radial stations 1 and 2). Close to

the hub, where three-dimensional viscid effects are not prevalent, the

difference between the experimental and theoretical results should not

be large. Near the tip region, the experimental pressure surface s

distributions agree closely with the numerical analysis while the

suction surface s distributions show the most discrepancy. The radial

variation of 5s plotted in Fig.- 17 shows the larger deviation between

the experimental and theoretical results near the tip which is expected

from previous discussions and reflects the region where the secondary

flow effects are concentrated. The chordwise gradients of pressure and

suction surface *s in Figs. 12-16 appear similar for both experimental

and theoretical results.

The s distributions obtained from the viscid analysis program are

also plotted in Figs. 12-16. The general shape of the viscid analysis

~s distribution closely resembles that of the inviscid analysis.

Greatest variation between viscid and inviscid analyses are shown at

the tip (radial station 5), where the viscous effects are dominant.

The radial variations of 's in Fig. 17 verify this observation. The

deviation between inviscid and viscid s near the tip appears greater

at station 2 than at station 1.
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Mean Velocities at Station 1

Total Relative Velocity.- The inviscid analysis results for total

relative velocity, QR across the inducer passage are plotted in Fig.

44 for the radii corresponding to those used in the experimental investi-

gation. The similarity of the analytical solution with experiment can

be seen by comparing the theoretical results with Fig. 22. As in the

experimental results, the velocities increase from hub to tip. Inviscid

turning effects resulting in higher velocity near the suction surface

are also evident. Overall magnitudes of the velocities are lower than

those found from experimentation. Thus, although the static pressure

distributions have been found to be comparable,.the velocities

predicted are lower than the measured values and seems to indicate loss

in kinetic energy. The radial variation of passage-averaged total

relative velocity QR found from the inviscid analysis is compared in

Fig. 23.. The difference between the inviscid results and design

values of QR appears to increase from hub to tip. This tends to indi-

cate that three-dimensional inviscid effects are larger near the tip,

a result which has been shown experimentally.

The total relative velocity distribution obtained from the viscid

analysis is shown in Fig. 45. The imposition of the boundary condi-

tion which defines the relative velocity on the inducer blade surface

as zero enables the viscid program to provide a crude approximation for

the pressure and suction surface boundary layers. The magnitudes of

QR are similar to those found from the inviscid analysis. A slight

velocity deficiency is noted near the tip at approximately 50%

passage width. This agrees with the experimental results of Fig. 22

and indicates an area of high viscous loss. A closer comparison of
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results can be made by examining Fig. 46 for R = .973 and Fig. 47 for

R = .548. The viscid results seem to agree with experiment qualita-

tively. The radial variation of QR in Fig. 23 shows that, near the tip,

the viscid analysis velocities are lower than those derived from the

inviscid analysis.

Relative Tangential Velocity.- The relative tangential velocity

distributions obtained from the inviscid and viscid analyses are not

included here, since the magnitude and shape of these curves closely

approximate the total relative velocity distributions of Figs. 44 and

45 and illustrates the dominance of the tangential component inside the

inducer channel.

Axial Velocity.- The axial velocities predicted from viscid and

inviscid analysis at R = .973 and R = .548 are shown compared with

experimental results in Fig. 48. The predictions were found to be

very similar at all radii. The predictions are good at R = .548 and

poor at R = .973, thus indicating the dominance of viscous effects near

the tip. No comments can be made with regard to the accuracy of viscid

results, since the measurements close to the proximity of the wall are

not available. The passage-averaged velocities W are compared with

experimental results in Fig. 27. The predictions are good up to R = .9,

the discrepancy increases considerably beyond this radius.

Radial Velocity.- The radial velocity predicted from the theoreti-

cal analyses is found to be very small at this station. The radial

variation of passage-averaged radial velocity U-, plotted in Fig. 29,

indicates that the theoretical predictions are significantly lower than
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the experimental results and emphasizing the substantial three-

dimensionality which exists in the real inducer flow.

Mean Velocities at Station 2

Total Relative Velocity.- Inviscid analysis results for the total

relative velocity distribution are plotted in Fig. 49. Magnitudes of

QR near the tip are comparable to those found experimentally (Fig. 30a),

whereas near the hub the inviscid velocities are significantly lower

than those shown for the experimental results of Fig. 30a. The latter

observation is consistent with the results for the QR distribution at

station 1. The radial variation of passage-averaged total relative

velocity predicted from the inviscid analysis is shown in Fig. 31. The

difference between the inviscid results and design values of R appears

to increase from hub to tip, indicating the larger three-dimensional

inviscid effects existing near the tip and confirmed by experimentation.

Comparison of inviscid results from Fig. 31 with those of Fig. 23 for

station 1 indicates that the deviation between the inviscid and design

velocities has increased from station 1 to station 2. This supports

the contention that the three-dimensional inviscid effects increase in

severity as the flow proceeds downstream inside the inducer channel.

The agreement between the measured and predicted QR is reasonably good

(Fig. 31).

The viscid analysis prediction for the total relative velocity

distribution is shown in Fig. 50. It is a striking departure from the

inviscid analysis distribution (Fig. 49), especially near the tip

where the viscous effects are known to be appreciable. The viscid

analysis also provides crude approximations for the suction and pressure
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surface boundary layers. A large velocity deficiency near the tip is

predicted at approximately 50% passage width and agrees favorably with

the experimental QR profiles plotted in Fig. 30a. It is apparent

that the velocity deficiency noted near the tip at station 1 (Fig.

45) has grown.considerably as the flow proceeded downstream to

station 2, indicating an increase in size and intensity of the viscous

loss region and substantiating the experimental results discussed

previously. The blade boundary layer development predicted by the

viscid analysis can be seen in Fig. 50. The suction surface boundary

layer appears thicker than the pressure surface boundary layer at all

radii, increasing in thickness from hub to tip. This observation is

consistent with experimental results and conforms with previous

discussions on boundary layer interaction and flow mixing near the. tip.

The radial variation of Q derived from the viscid analysis is plotted

in Fig. 31. The deviation between viscid and inviscid velocities near

the tip can be attributed to the large viscous losses which are known

to exist in this region. Comparisons of the total relative velocity

distributions at R = .973 and R = .548 are given in Fig. 51 and

Fig. 52 respectively. It appears that the viscid analysis distri-

bution provides better approximations to the experimentally derived

velocity profiles.

Relative Tangential Velocity.- Relative tangential velocity distri-

butions predicted by the inviscid and viscid analyses closely resemble

the total relative velocity distributions indicated in Fig. 49 and

50 respectively. Comments in the previous section relating to total

relative velocity are also applicable here. The tangential velocity

continues to dominate the flow within the rotating inducer passage,
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although the influence of radial and axial velocities is greater than

that at station 1, especially near the hub. The three-dimensionality

of-the flow is appreciable. The radial variation of passage-averaged

relative tangential velocity derived from the inviscid analysis is

shown in Fig. 33. The influence of three-dimensional inviscid

effects on the flow, reflected in the difference between inviscid

results and design, appears to increase in magnitude near the tip. The

high absolute tangential velocities predicted from the inviscid

analysis are indicative of the high stagnation pressure rise through

the inducer.passage. The lower values of viscid analysis V, when

compared to those predicted from the inviscid analysis (Fig. 33), can

be attributed to the viscous losses and secondary flows which prevail

at this location. The higher values of absolute tangential velocity

predicted from the viscid analysis are consistent with the increased

effects of complex viscous interactions near the tip.

Axial Velocity.- Fig. 53 shows the axial velocity distribution

predicted from the inviscid analysis. There is a definite decrease in

axial velocity from hub to tip, which appears to indicate the presence

of the blade blockage effect within the flow passage. This observation

is consistent with the experimental results plotted in Fig. 30b. The

radial variation of Wpredicted from the inviscid analysis (Fig. 27)

agrees almost exactly with the experimental distributions., Continuity

has been satisfied within the exact analysis program.

The viscid analysis results for the axial velocity distributions

are shown in Fig..54 and indicate the approximate profiles for the

pressure and suction surface boundary layers. The axial velocity

profile decreases in magnitude from hub to tip and tends to confirm
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the presence of the blade blockage effect at this location. The radial

variation of viscid analysis W in Fig. 27b conforms almost precisely

with the experimental results. Comparisons of the axial velocity

distributions at R = .973 and R = .671 are given in Fig. 55. The

axial velocity profiles predicted from the viscid analysis appear to

more closely approximate the experimental distributions.

Radial Velocity.- The inviscid analysis results for the radial

velocity distribution at station 2 are given in Fig. 56. The tip

region appears to exhibit the lowest radial velocities, which is

consistent with the experimental results plotted in Fig. 32b. .The

blade limiting streamline angle measurements also substantiate this

observation. The magnitudes of the inviscid analysis radial velocities

are significantly lower than the corresponding values of experimental

radial velocity, indicating the considerable three-dimensionality of

the real flow existing within the inducer blade passages. The radial

velocity plotted in Fig. 56 appears to decrease across the inducer

passage from suction surface to pressure surface, a condition which is

found to exist experimentally (Fig. 32b).. A region of-radially

inward flow near the tip at approximately 50% passage width is noted

from the inviscid analysis radial velocity profiles. The existence

of radially inward flow in this area has been found experimentally and

is consistent with previous discussions on flow mixing effects in this

region.

The viscid analysis results for the radial velocity distribution is

shown in Fig. 57.. Little difference is noted from the inviscid

distribution except at the pressure and suction surfaces where the

velocities are fixed at zero. The region of radially inward flow near
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the tip is similar to that found with the inviscid analysis. The radial

variation of passage-averaged radial velocity derived from the viscid

analysis (Fig. 29) reflects the significantly higher radial velocities

found experimentally.
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DISCUSSIONS AND CONCLUSIONS

A brief summary of conclusions reached by the analytical and experi-

mental investigation reported in this thesis are as follows:

1) Preliminary investigations into the use of the quasi-three-

dimensional Douglas-Neumann method indicate that it appears to provide a

better initialization of velocity and pressure parameters needed for the

Cooper-Bosch exact solution.

2) Modifications to the Cooper-Bosch program to automatically

unload the trailing edge station and incorporate dominant viscid effects

have been made in subroutines "Main", "Dloss", and "Resid". Preliminary

testing of these modifications indicate that the inviscid analysis has

been improved and a satisfactory viscous capability has been provided.

3) The viscid analysis is, at best, approximate due to the various

assumptions and simplifications made. In particular, the viscid boundary

conditions imposed on the solution are rather drastic, since the grid

geometry spacing used in the exact analysis is relatively large. More

tangential grid stations would be needed, especially close to the blade

surface, to better define the shape of the blade boundary layer.

4) The ammonia trace technique provides a satisfactory method

for determining blade limiting streamline angles within the rotating

inducer blade passages. The blade limiting streamline angle measure-

ments provide several observations which have either been noted in

previous investigations or have been found from other experimental

results contained in this thesis. These include: an increase in a

from the leading edge to the trailing edge indicating the existence of

higher radial velocities as the flow proceeds downstream within the
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inducer channel; higher values of a near the hub indicating higher

radial velocities in this region; negative values of a at the pressure

surface tip (up to 45% chord) indicating radially inward flow due to

the presence of the annulus wall boundary layer scraping effect; values

of a greater than 900 near the hub trailing edge indicating the

existence of a backflow region in this area; higher values of a through-

out the inducer channel in comparison with the results of a single blade

reported in Ref. 14 andindicating appreciable radial velocities

existing within the inducer passage, especially near the blade surface.

In addition, the blade limiting streamline measurements will provide

valuable information on boundary layer and Reynolds stress character-

istics for future investigations.

5) The experimental blade static pressure distributions confirm

the trailing edge loading characteristic inherent in the inducer blade

design. The magnitudes of s are considerably higher than design

values, indicating the significant effect of three-dimensionality in

the inducer flow. The static pressure distributions display small

negative is values near the leading edge of the suction surface. The

agreement between theory and experiment is good, especially near the

hub where flow mixing and viscous loss effects are minimal.

6) The rotating triaxial hotwire probe utilized in this study has

yielded satisfactory velocity profiles and turbulence quantities.

Comparison of velocities derived from this method show good agreement

with those found from rotating pressure probe measurements in Ref. 7.

It can be concluded that hotwire anemometry can be an extremely useful

tool in the study of the relative flow parameters in a rotating

environment.
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7) Total relative velocity measurements indicate a substantial

velocity deficiency near the tip at mid-passage which expands

significantly as the flow proceeds downstream toward the inducer

trailing edge. This indicates the considerable extent of flow mixing

due to boundary layer interaction, radially inward and outward flow,

annulus wall effect, etc. which is prevalent at this location inside

the long narrow passages of the inducer. The position of this "loss

core" appears to drift closer to the blade suction surface as the flow

proceeds toward the inducer exit. An increased difference between the

experimental results and the two-dimensional design curves near the tip

for the radial distribution of passage-averaged total relative velocity

further indicates the regions where significant three-dimensional

effects and flow losses exist. The velocity distributions determined

from the theoretical analysis are similar to those derived from experi-

mentation. The presence of the velocity deficiencies near the tip has

been predicted by the viscid analysis program.

8) The high values of absolute tangential velocity which are

found to exist near the inducer tip indicate a region of large

absolute stagnation pressure rise caused by the effects of complex

viscous interactions. The size and severity of this region increases

significantly as the flow proceeds downstream inside the inducer blade

channel. This observation is also predicted from the three-

dimensional theoretical analysis.

9) The higher values of axial velocity near the hub indicate

the significant effect of blade blockage within the inducer flow

passage. A slight backflow was found to exist at the extreme tip

location of flow station 1 and can be attributed to the annulus wall
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boundary layer scraping effect identified in the gw measurements.

The agreement between the experimental results and theoretical analysis

is extremely good. The viscid analysis results appear to more closely

approximate the experimental axial velocity distributions than the

inviscid program.

10) The measured magnitudes of radial velocity are found to be on

the same order as those of axial velocity within the inducer passage.

This is similar to the results of Ref. 20 which were made slightly

downstream of the inducer trailing edge. The large values of radial

velocity confirm the highly three-dimensional characteristic of inducer

flow and emphasize the necessity of a suitable three-dimensional theory

for accurate flow analysis. The radial velocities are generally found

to decrease in magnitude from hub to tip and increase in magnitude from

leading edge to trailing edge. These observations are consistent with

the ; measurements mentioned previously. A region of radially inward

flow is found to exist near the mid-passages of the tip region and

correspond to the locations of the velocity deficiencies noted in the

QR distributions. These measurements support the explanation for the

existence of the large flow losses in this region due to extensive flow

mixing and complex viscous interations. The magnitudes of radial

velocity predicted from the theoretical analysis are significantly

lower than the experimental results. The radially inward flow found

experimentally near the tip mid-passage has been predicted with the

three-dimensional theoretical analysis.

11) Turbulence levels within the blade passage, indicated from the

experimental results of this thesis, are generally high near the tip

regions. A growing core of high turbulence is evident near the tip
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mid-passage corresponding to the region of velocity deficiency

mentioned in item 7) above. High turbulence levels are also recorded

near the hub pressure surface and indicate the influence of the pres-

sure surface boundary layer. The radial component of turbulence

intensities appears to have the largest magnitudes, reaching calculated

values of up to 24% in the mixing region. The total turbulence energy

contours are similar to those of the turbulence intensities.

12) The locations of high turbulence stresses are concentrated in

the high turbulence intensity areas of the mixing region and near the

hub pressure surface. Values of uv appear to be higher in the mixing

region than the corresponding values of vw and uw. The high stress

regions are indications of areas subjected to complex viscous inter-

actions.

13) Experimental velocity and turbulence results of Ref. 20

show nearly uniform distributions slightly downstream of the inducer

trailing edge. Thus it appears that considerable wake diffusion occurs

immediately after the trailing edge to decay the turbulence core and

blade blockage effects reported in this thesis.

The hotwire analysis developed in this investigation was an

initial attempt to determine the three components of velocity,

turbulence intensity and Reynolds stresses in a rotating reference

frame. Certain improvements and refinements can be made to the

experimental techniques to reduce the errors encountered in the experi-

mental measurement. In particular, the following are recommended:

a) The use of linearizing circuits in conjunction with the hotwire

anemometer for measurement of flow parameters when turbulence levels are
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excessively high (greater than 20%). The linearizing assumptions

used for the hotwire equation derivation would then be valid.

b) The-use of a multiplying circuit instead of the sum-and-

difference circuit to obtain the direct measurement of ele 2 terms for

the hotwire equations. This would minimize the experimental errors

encountered in the hotwire signal handling.

c) The necessity of having identical resistances for all hotwire

sensors of the probe so the same calibration curve applies to all. This

is extremely important in fluctuation velocity measurements where

arithmetic operation of hotwire signals is involved.

d) The necessity of precise measurement of hotwire angles with

respect to the R-6-Z coordinate system. The velocities and turbulence

quantities calculated by the analysis described in the chapter "Deriva-

tion of the Hotwire Equations" are sensitive to the direction cosine

coefficients used in the equations.

e) The use of a precise traversing mechanism to survey the flow

field and assure uniform orientation of the hotwire probe in the R-0-Z

coordinate system.

This thesis has attempted to present a detailed description of

analytical and experimental investigations on flow through a three-

bladed axial flow inducer. Although the investigations are performed

on an axial flow inducer of a specific configuration, certain methods

and techniques which have been developed are applicable to all types of

turbomachinery. In particular, the equations and method ofsolution

used in the exact analysis program are completely general and are not

restricted solely to the solution of inducer fluid flow. Similarly, the

experimental techniques used in conjunction with the rotating three-
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sensor hotwire anemometer can be applied to most turbomachinery

applications where relative velocity measurements are desired.
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APPENDIX A

Flow Chart Diagrams of Exact Analysis Program

Incorporating Viscid and Inviscid Modifications



140

Read input Sequentially
data - revise ADJust local
if necessary variables

Calculate 1 except where
local STAR -- -- fixed by

Yes residual boundary
v = 0.0

? conditions

No 381

Do for
Set U, =0 K = 2, KMAX "DO LOOP"Set U, V, W =0 J = ,J -J = 1, JMAX

on blade I = , IMAX

31), No

Calculate
initial outlet Last cycle ? Yes

air angles

JACOBian Converged ? routine
coefficients

11 467
Yes Calculate

v = 0.0 RMS residual End

No 152

oNo Initialize
669 500 AU, AV, AW, Ap

Read reference Calculate all for next cycle

Cf vs. Re  point
curves RESIDuals

ecalculate
d ownstream

De point RESIDuals
Develop Calculate T T ,
Cf vs. Re  T Tz in 

R e c a lcu la t e

equations IDLOSS downstream
11 JACOBian coef.

670 No Yes

Calculate all Yes No Unload
point densities v = 0.0 ? trailing edge
in STATE ar f

Flow Chart Diagram for Main Analysis Program.



141

Satisfy
Subroutine 9 boundary

RESID conditions,if
applicable

No Trailing
edge?

Yes

Satisfy
Kutta
Condition

401

Calculate all
Lderivatives

Convert
derivatives to
cylindrical
coordinates

r U- -z

Calculate T, No
To, T in 

= 00

DLOSS

391 Ye sIl 391
Calculate loss Calculate
terms F , F, Point Residual Return
F r

Flow Chart Diagram for Subroutine RESID



142

Find passage-
averaged

Subroutine velocity
DLOSS

Calculate R e;
Find C from
interpolation
of input
curves

Calculate
values of
wall shear
stress T

w

Calculate
shear stress
components
Tr ,Te z at

grid point
(I,J,K)

Return

Flow Chart Diagram for Subroutine DLOSS



143

APPENDIX B

Fortran Listing of Exact Analysis Program

Incorporating Viscid and Inviscid Modifications
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C
C THREE DIMENSIONAL FLOW ANALYSIS IN PENN STATE INDUCER JULY 1973
C
C ORIGINAL PROGRAM DEVELOPED BY P. COOPER AND H. BOSCH OF
C TRW ACCESSORIES DIVISION, CLEVELAND, OHIO
C
C MODIFICATIONS MADE BY C. GORTON AT PENN STATE DURING SUMMER 1973
C

IMPLICIT LOGICAL*1 ($)
COMMON U(7,7,39),V(7,7,39),W(7,7,39),P(7,7,39),D(7,7,39),R(7,7,39)

1,T(7,7,39),Z(7,7,39),FRFT,FZ,DMAX(4),DELX(4),NSEQ(4),RES(8, 8 ,h0),
2AR(7,7,39),AT(7,7,39ABT(7,7,39RBZ(7,7,39),
3CR(7,7,39),CT(7,7,39),CZ(7,7,39) ,XH,RSTAR,
4TT,PSAT,DLIQ,REV,A,M,NVAR,NTR,IRSTAR,DX,I,J,K,II,JJ,KK,IMAX,JMAX,K
5MAX,VISC,NBD,KLE,KTE,WRE(7,7,39)
COMMON /$$LOSS/ TAUR(7,7,26),TAUT(7,7,26),TAUZ(7,7,26),TAU(7,7,26 )
COMMON/$$CFRE/ SLOPEP(25),SLOPES(25),BP(25),BS(25)
COMMON /$$STRT/ KSTART
DIMENSION CFS(2),CFP(2)
DIMENSION THETA(3),REREF1(3),REREF2(3),CFREFP(2,3),CFREFS(2,3)
DIMENSION DEV(7),DEL(7)

C
C READ INITIAL DATA FROM TAPE
C

READ(91)IMAX,JMAX,KMAX,KLE,KTE
READ(91)( (R(I,J,K),I=1,IMAX) ,J=1,JMAX),K=1,KMAX)
READ(91)(((T(I,J,K),I=1,IMAX) ,J=1,JMAX) ,K=1,K4AX)
READ(91)(((Z(I,J,K),I=1,IMAX),J=1,JMAX),K==1,KMAX)
READ(91)KOUNT,NUM,M,(NSEQ(L) ,L=1,4)
READ(91)(DMAX(L),L=1,) ,A,CRIT,E
READ(91)REV,DLIQ,PSAT,TT,VISC
READ(-91)(((U(I,J,K),I=1,IMAX),J=1,JMAX),K=1,KMAX)
READ(91)(((V(I,J,K),I=1,IMAX),J=l,JMAX),K=1,KMAX)
READ(91)(((W(I,J,K),I=1,IMAX),J=1,JMAX),K=1,KMAX)
READ(91)(((P(I,J,K),I=1,IMAX),J=1,JMAX),K=1,KMAX)
REWIND 91

C
JPRES=1
JSUC=JMAX
NBD=1
NTR=O
ANR=4* IMAX*JMAX*KMAX

C
C UPDATE TAPE DATA
C

READ(5,1004)KOUNT,NUM,M,(NSEQ(L) ,L=1,4)
READ(5,1002)(DMAX(L),L1,h) ,A,CRIT,E
READ(5,1002)REV,DLIQ,PSAT,TT,VISC
IF(VISC)32,31,32

C
C IF VISCOSITY IS CONSIDERED, SET U,V,W EQUAL TO ZERO ON BLADE
C

32 DO 17,K=KLE,KTE
DO 17 I=1,IMAX



145

DO 17 J=1,JMAX
IF((J-1 )* (J4AX-J)) 31,18,17

18 U(I,J,K)=0.0
V(I,J,K)=0.0
W(I,J,K)=0.0

17 CONTINUE
C
C CALCULATE INITIAL OUTLET AIR ANGLES
C

31 DO 121 I=1,IMAX
IF(VISC)19,20,19

20 DEL(I)=ATAN(V(I,JPRES,KTE)/W(I,JPRES,KTE))
GO TO 21

19 DEL(I)=ATAN(V(I,JPRES,KTE+1)/W(I,JPRES,KTE+1))
21 DEL(I)=ABS(DEL(I))

DDEL=DEL(I )*180/3.14159
121 CONTINUE

C
C CONVERT COORDINATE SYSTEMS
C

KSTART=1
CALL JACOB
PRINT 1000
NMAX=KOUNT+NUM
PRINTI 1007 ,IMAX,JMAX,KMAX,M,A,REV,DLIQ,PSAT,TT,VISC
PRINT 1006,(NSEQ(L),L=1,4)

C
C READ.IN CF VS. RE CURVES FOR VARIOUS REFERENCE THETA LOCATIONS
C

IF(vIsc)669,670,669
669 READ(5,700)NCURVE

- DO --7-10-- I=1,-NCURVE ---.- - - - -
READ(5,720)THETA(I),REREF1(I),CFREFP(1,I),CFREFS(1,I),REREF2(I),CF
1REFP(2,I),CFREFS(2,I)

THETA(I)=THETA(I)*3 .1159/180.
710 CONTINUE

C
C DEVELOP EQUATIONS OF CF VS. RE CURVES FOR ALL BLADE K VALUES
C

DO 750 K=KLE,KTE
I=IMAX
DO 755 J1=1,2
IF(Jl.EQ.2)GO TO 756

C
C J1=1,,PRESSURE SURFACE J1=2 SUCTION SURFACE
C

J=l
GO TO 757

756 J=JMAX
757 THET=ABS(T(I,J,K)-T(I,J,KLE))

C
C SEARCH THETA REFERENCE VALUES
C

DO 760 KK=1,NCURVE
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II=KK
IF(THET.GT.THETA(II))GO TO 759
IF(II.EQ.1)GO TO 762
GO TO 761

762 II=II+1
761 RATIO=(THET-THETA(II-1))/(THETA(II)-THETA(II-1))

GO TO 765
759 IF(II.EQ.NCURVE)GO TO 761
760 CONTINUE
765 D 740 JJ=1,2

GO TO (780,785),J1
780 CFP(JJ)=CFREFP(JJ,II-1)+RATIO*(CFREFP(JJ,II)-CFREFP(JJ,II-1))

GO TO 740
785 CFS(JJ)=CFREFS(JJ,II-1)+RATIO*(CFREFS(JJ,II)-CFREFS(JJ,II-1))
740 CONTINUE
755 CONTINUE

JJ=l
DENOM=ALOG10(REREF2(JJ))-ALOG0 (REREF (JJ))
SLOPEP(K)=(ALOG10(CFP(JJ))-ALOG10(CFP(JJ+1)))/DENOM
SLOPES(K)=(ALOG10(CFS(JJ))-ALOG10(CFS(JJ+1)))/DENOM
BP(K)=CFP(JJ)*REREF1(JJ)**SLOPEP(K)
BS(K)=CFS(JJ)*REREF1(JJ)**SLOPES(K)

750 CONTINUE
C
C CALCULATE POINT DENSITIES
C
C INITIALIZE VALUES OF TAUR,TAUT,AND TAUZ IF NECESSARY
C

670 DO 150 L=1,4
150 DELX(L)=DMAX(L)

DO 501 K=1,KMAX
DO 501 J=1,JMAX
DO 501 I=1,IMAX
IF (TT) 502,503,502

502 CALL STATE
GO TO 120

503 D(I,J,K)=DLIQ
120 IF(VISC)385,501,385
385 IF((K.LT.KLE).ORo(K.GT.KTE))GO TO 501

CALL DLOSS
501 CONTINUE

C
C USE FRICTION VALUES TO FIND INITIAL FR,FT,FZ, AND RESIDUALS
C

DO 140 K=1,KMAX
DO 140 J=1,JMAX
DO 140 I=1,IMAX
IF (D(I,J,K)) 500,500,500

500 CALL RESID
140 CONTINUE

PRINT 1012
C T

C CALCULATE TOTAL ROOT-MEAN-SQUARE RESIDUAL
C
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467 RT=OO.
RESMAX=0.0
RESMIN=RES(1,1,1)
DO 368 K=1,KMAX
DO 368 J=1,JMAX
DO 368 I=1,IMAX
IF(RES(I,J,K)-RESMAX)403,403, 4 02

402 RESMAX=RES(I,J,K)
GO TO 368

403 IF(RES(I,J,K)-RESMIN)404 ,368 ,368

404 RESMIN=RES(I,J,K)
368 RT=RT+RES(I,J,K)

RMS=SQRT(RT/ANR)
RESMAX=SQRT(RESMAX/ 4 .)
RESMIN=SQRT(RESMIN/4.)
PRINT. 1013,KOUNT,NTR,RMS,RESMAX,RESMIN,(DMAX(L), L=1,4)
DO 151 L=1,4

151 DMAX(L)=0o 0
IF (RESMAX-CRIT*E) 369,369,370

370 KOUNT=KOUNT+1
NTR=O
IF (KOUNT-INMAX) 360,360,371

C
C START SUCCESSIVE VARIATIONS CYCLE
C
C CHANGE OUTLET AIR ANGLE AND DOWNSTREAM COORDINATES IF NECESSARY
C

360 KBEGIN=2
KEND=KTE
NTR=O
$DELTA=.FALSE.

381 DO 460 KK=KBEGIN,KEND-
DO 460 JJ=1,JMAX
DO 460 II=1,IMAX
IRSTAR=1
CALL STAR
DO 460 L=1,4
NVAR=NSEQ(L)
GO TO (111,222,333,450),NVAR

111 IF (KK-2) 460,460,611
611 IF ((II-1)*(IMAX-II)) 460,460,450
222 IF (KK-2) 460,460,481
481 IF (KK-KMAX) 450,482,460
482 IF ((JJ-1)*(JMAX-JJ)) 460,460,450

333 IF (KK-2) 460,485,486
485 IF ((JJ-1)*(JMAX-JJ)) 460,460,471
471 IF ((II-1)*(IMAX-II)) 460,472,450
472 IF (AZ(II,JJ,KK)) 460,450,460
486 IF (KK-KMAX) 487,460,460
487 IF((JJ-1)*(JMAX-JJ))460,460,450
450 CALL ADJ
460 CONTINUE

IF(KEND-KMAX)461,152,152
461 K2=KTE+1
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DO 510 I=1,IMAX
c
C CHANGE EXIT AIR ANGLE IF GREATER THAN TWO PERCENT OF PREVIOUS
C EXIT AIR ANGLE
C

PCNT2=.02*DEL(I)
IF(VISC)25,26,25

26 DELNEW=ABS(ATAN(V(I,JPRES,KTE)/W(I,JPRES,KTE)))
GO TO 27

25 DELNEW=ABS(ATAN(V(I,JPRES,KTE+1)/W(I,JPRES,KTE+1)))
27 ABDEL=ABS(DELNEW-DEL(I))

IF(ABDEL-PCNT2)510,540,540
540 DEL(I)=DELNEW

DDEL=DEL(I)*180./3.14159
$DELTA=.TRUE.
WRITE(6,55)I,DDEL
DO 515 K=K2,KMAX
DO 515 J=1,JMAX
T(I,J,K)=T(I,J,KTE)+(Z(I,J,KTE)-Z(I,J,K))*TAN(DEL(I))/R(I,J,K)

515 CONTINUE
510 CONTINUE

C
C RE-CALCULATE JACOBIAN COEFFICIENTS FOR COORDINATE TRANSFORMATION
C

IF(.NOT.$DELTA)GO TO 521
KSTART=KTE
CALL JACOB

C
C RECALCULATE RESIDUALS
C

NBD=1
KKTE-KTE-1
DO 520 K=KKTE,KMAX
DO 520 J=1,JMAX
DO 520 I=1,IMAX
CALL RESID

520 CONTINUE
521 KBEGIN=KTE

KEND=KMAX
GO TO 381

152 DO 153 L=1,4
IF (DMAX(L)) 561,562,561

561 DELX(L)=DMAX(L)
GO TO. 153

562 DELX(L)=DELX(L)*A
153 CONTINUE

GO TO 467
C
C OUTPUT ROUTINE ***
C

98 WRITE(92)IMAX,JMAX,KMAX,KLE,KTE
WRITE(92)(((R(I,J,K),I=1,IMAX),J=1,JMAX),K=1,KMAX)
WRITE(92)(((T(I,J,K),I=1,IMAX),J=1,JMAX),K=1,KMAX)
WRITE(92)(((Z(I,J,K),I=1, IMAX),J=1,JMAX),K=1, KMAX)
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KOUNT=KOUNT-1
WRITE(92)KOUNT,NUM,M,(NSEQ(L) ,L=1,4)
WRITE(92)(DELX(L),L=1,) ,A,CRIT,E
WRITE(92)REV,DLIQ,PSAT,T]T,VISC
WRITE(92)(((U(I,J,K),I=1,IMAX),J=1,JMAX),K=1,KMAX)
WRITE(92)(((V(I,J,K),I=1,IMAX),J=1,JMAX),K=1,KMAX)
WRITE(92)(((W(I,J,K) ,I=1, IMAX),J=1,JMAX) ,K=1,KMAX)
WRITE(92)(((P((I,J,K) ,I=1,IMAX) ,J=1,JMAX),K=1,KMAX)
END FILE 92
REWIND 92
DO 2 I=1,IMAX
DO 2 J=1,JMAX
DO 2 K=1,KMAX

2 WRE(I,J,K)=SQRT(U(I,J,K)*U(I,J,K)+V(I,J,K),*V(I,J,K)+W(I ,J,K)*W(I,J

1,K)) o
PRINT 1000
DO 97 K=1,KMAX
PRINT 1005

97 PRINT 1003,((I,J,K,U(I,J,K),V(I,J,K),W(I,J,K),P(I,J,K),WRE(I,J,K),
1RES(I,J,K),I=1,IMAX),J=1,JMAX)

GO TO 99
369 PRINT 1014

GO TO 98
371 PRINT 1015

GO TO 98
C
C FORMAT STATEMENTS
C

55 FORMAT(32X,'*** OUTLET AIR ANGLE FOR I=',I2,' CHANGED TO',F10o3)
700 FORMAT(9X,I1)
720 FORMAT(F10.1,F10.O,F10.5,F10.5,F0.O,FlO.5,F10.5)

1000 FORMAT (75HO -3 DIMENSIONAL ANALYSIS OF SECONDARY FLOW IN PENN ST
1ATE 3 BLADE INDUCER )

1002 FORMAT(8F10.7)
1003 FORMAT(3I3,6F18.7)
1004 FORMAT(715)
1005 FORMAT (//2X,1HI,2X,1HJ,2X,1HK,9X,1HU,17X,1HV,17X,1HW,17X,1HP,17X,

13HVEL,13X,3HRES/)
1006 FORMAT (2X23HADJUSTMENT SEQUENCE IS ,41,38H WHERE U IS 1, V IS 2,

1 W IS 3, P IS 4.///)
1007 FORMAT (I3,1HX,I2,1HX,I2,5H GRID,6X,2HM=,I2,6X,2HA=,1PE10.4//5H RE

1V=,1PEi0o4,5X,5HDLIQ=,1PE10.4,5X,5HPSAT=,1PE10.4,5X,3HTT=,1PEl 0o4,
15X,5HVISC=,1PE10.4/)

1012 FORMAT(/6H RELAX,3X,5HNO OF,5X,9HTOTAL RMS,7X,7HMAX RMS,7X,7HMIN R
IMS,16X,44HMAGNITUDE OF BIGGEST ACCEPTED ADJUSTMENT FOR/6H CYCLE,3X
1,5HTRIES,3(6X,8HRESIDUAL) ,17X,1HU,13X,lHV ,3X,1HW,13X,1HP/)

1013 FORMAT (I6,I8,1P3E14.4,8X,1P4El4.4)
i014 FORMAT (/20X,9HCONVERGED/)
1015 FORMAT (/20X,33HMAXIMUM NUMBER OF CYCLES EXECUTED/)

C
C END OF PROGRAM
C

99 STOP
END
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SUBROUTINE JACOB
IMPLICIT LOGICAL*l ($)

C
C CALCULATION OF JACOBIAN COEFFICIENTS FOR GENERAL-TO-CYLINDRICAL
C COORDINATE TRANSFORMATION
C

COMMON U(7,7,39),V(7,7,39),W(T,7,39),P(7,7,39),D(7,7,39) ,R(7,7,39)
1,T(7,7,39),Z(7,7,39),FR,FT,FZ,DMAX(4),DELX(4),NSEQ(4),RES(8,8,h0),
2AR(7,7,39),AT(7,7,39),AZ(7,7,39 ) ,BR(7,7,39),BT(7,7,39),BZ(7,7,39),
3CR(7,7,39),CT(7,7,39),CZ(7,7,39),XH,RSTAR,
4TT,PSAT,DLIQ,REV,A,M,NVAR,NTR,IRSTAR,DX,I,J,K,II,JJ,KK,IMAX,JMAX,K
5MAX,VISC,NBD,KLE,KTE,WRE(7,7,39)
COMMON /$$STRT/ KSTART
DO 18 K=KSTART,KMAX
DO 18 J=1,JMAX
DO 18 I=1,IMAX
IF (I-1) 3,3,4

3 RA=R(I+1,J,K)-R(I,J,K)
TA=T(I+1,J,K)-T(I,J,K)
ZA=Z(I+1,J,K)-Z(I,J,K)
GO TO 7

4 IF (I-IMAX) 5,6,6
5 RA=(R(I+1,J,K)-R(I-1,J,K))/2.
TA=(T(I+1,J,K)-T(I-1,J,K))/2.
ZA=(Z(I+1,J,K)-Z(I-1,J,K))/2.
GO TO 7

6 RA=R(I,J,K)-R(I-1,J,K)
TA=T(I,J,K)-T(I-1,J,K)
ZA=Z(I,J,K)-Z(I-1,J,K)

7 IF (J-1) 8,8,9
8 RB=R(I,J+1,K)-R(I,J,K)

TB=T(I ,J+1,K)-T(I,J,K)
ZB=Z(I,J+1,K)-Z(I,J,K)
GO TO 12

9 IF (J-JMAX) 10,11,11
10 RB=(R(I,J+1,K)-R(I,J-1,K))/2.

TB=(T(I,J+1,K)-T(I,J-1,K))/2.
ZB=(Z(I,J+1,K)-Z(I,J-1,K) )/2.
GO TO 12

11 RB=R(I,J,K)-R(I,J-1,K)
TB=T(I,J,K)-T(I,J-1,K)
ZB=Z(I,J,K)-Z(I,J-1,K)

12 IF (K-I) 13,13,14
13 RC=R(I,J,K+1)-R(I,J,K)

TC=T(I,J,K+1)-T(I,J,K)
ZC=Z(I,J,K+1)-Z(I,J,K)
GO TO 17

14 IF (K-KMAX) 15,16,16
15 RC=(R(I,J,K+1)-R(I,J,K-1))/2.

TC=(T(I,J,K+1)-T(I,J,K-1))/2.
ZC=(Z(I,J,K+1)-Z(I,J,K-1))/2.
GO TO 17

16 RC=R(I,J,K)-R(I,J,K-1)
TC=T(I ,J,K)-T(I,J,K-1)
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ZC=Z(I,J,K)-Z(I ,J,K-1)
17 B=A* (B*ZC-.TC*ZB).tp3* (TC*ZA-TA*ZC)+RC* (TA*ZB-TB*~ZA)

AR(I ,J,K)=(TB*ZC-TC*ZB)/B
BR(I ,J,K)=(TC*ZA-TA*ZC)/B
CR( I,J ,K)=(TA*ZB-TB*ZA)/B
AT(I ,J,K)=(ZB*RC-ZC*RB)/B
BT(I,J,K)=(ZC*RA-ZA*RC)/B
CT(I ,J ,K)=( ZA*RB-ZB*RA)/B
AZ(I ,J,K)=(RB*TC-RC*TB)/B
BZ( I,J,K)=(RC*TA-RA*TC)/B

18 CZ(I,J,K)=(RA*TB-RB*TA)/B
RETURN
END
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SUBROUTINE RESID,
IMPLICIT LOGICAL*1 ($)

C
C CALCULATION OF POINT RESIDUAL
C

COMMON U(7,7,39),V(7,7,39) ,W(7,7,39),P(7,7,39),D(7,7,39),R(7,7,39)
1,T(7,7,39),Z(7,7,39),FR,FT,FZ,DMAX(4),DELX(4),NSEQ(4),RES( 8 , 8 ,40),
2AR(7,7,39),AT(7,7,39) ,AZ(7,7,39) ,BR(7,7,39) ,BT(7,7,39) ,BZ(7,7,39),
3CR(7,7,39),CT(7,7,39),CZ(7,7,39),XH,RSTAR,
4TT,IPSAT,DLIQ,REV,A,M,NVAR,NTR,IRSTAR,DX,I ,J,K,II,JJ,KK,IMAX,JMAX,K
5MAX,VISC,NBD,KLE,KTE,WRE(7,7,39)
COMMON /$$LOSS/ TAUR(7,7,26),TAUT(7,7,26),TAUZ(7,7,26),TAU(7,7,26 )
COMMON/$$CFRE/ SLOPEP(25),SLOPES(25),BP(25),BS(25)
IF (NBD) 400,401,99

C
C CHECK WALL BOUNDARY CONDITIONS
C

99 IF (K-2) 401,100,103
C
C *** K=2 ***
C

100 IF ((I-1)*(IMAX-I)) 400,121,124
121 IF ((J-1)*(JMAX-J)) 400,102,122
122 IF (AZ(I,J,K)) 123,351,123
123 W(I,J,K)=-U(I,J,K)*AR(I,J,K)/AZ(I,J,K)

GO TO 351
124 IF ((J-1)*(JMAX-J)) 400,111,351
102 DDD=(BT(I,J,K)/R(I,J,K))/(AR(I,J,K)*BZ(I,J,K)-BR(I,J,K)*AZ(I,J,K))

W(I,J,K)=-V(I,J,K)*AR(I,J,K)*DDD
GO TO 351

103 IF (K-KMAX) 108,104,400
C
C *** K=KMAX ***
C

104 IF ((I-1)*(IMAX-I)) 400,105,106
105 U(I,J,K)=-W(I,J,K)*AZ(I,J,K)/AR(I,J,K)
106 IF ((J-1)*(JMAX-J)) 400,107,351
107 V(I,J,K)=-R(I,JK)*(U(I,J,K)*BR(I,J,K)+W(I,J,K)*BZ(I,J,K))/BT(I,J,

1K)
GO TO 351

108 IF(K-KTE)12,8,8
C
C **, K.GE.KTE ***
C
C FORCE VELOCITIES AND PRESSURES TO SATISFY KUTTA CONDITION
C

8 IF((J-1)*(JMAX-J))12,11,12
11 P(I,J,K)=(P(I,1,K)+P(I,7,K))/2.

U(I,J,K)=(U(I,1,K)+U(I,7,K))/2.
V(I,J,K)=(V(I,1,K)+V(I,7,K))/2.
W(I,J,K)=(W(I,1,K)+W(I,7,K))/2.

C
C *** K IS NEITHER 2 NOR KMAX ***
C
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12 IF ((I-1)*(IMAX-I)) 400,109,110
109 IF ((J-1)*(JMAX-J)) 400,112,114
110 IF ((J-1)*(JMAX-J)) 400,111,351
111 W(I,J,K)=-(U(I,J,K)*BR(I,J,K)+V(I,J,K)*BT(I,J,K)/R(I,J,

K ) )/ B Z (I,J,

1K)
GO TO 351

112 DDD=(BT(I,J,K)/R(I,J,K))/(AR(I,J,K)*BZ(I,J,K)-BR(I,J,K)*AZ(I,J,K))
W(I,J,K)=-V(I,J,K)*AR(I,J,K)*DDD
U(I,J,K)=V(I,J,K)*AZ(I,J,K)*DDD
GO TO 351

114 U(I,J,K)=-W(I,J,K)*AZ(I,J,K)/AR(I,J,
K )

351 IF((K.LT.KLE).OR.(K.GT.KTE))GO TO 401

IF(VISC)402,401,402
C
C FOR VISCOUS SOLUTION, BLADE SURFACES HAVE ZERO VELOCITY

C
402 IF((J-1)*(JMAX-J))400,403,

401

403 U(I,J,K)=0.O
V(I,J,K)=0.0
W(I,J,K)=O.O

C
C CALCULATE ALL DERIVATIVES
C
401 IF(I-1)400,354 ,353
354 UA=(U(I+1,J,K)-U(I,J,K))

VA=(V(I+1,J,K)-V(I,J,K))
WA=(W(I+1,J,K)-W(I,J,K))
PA=(P(I+1,J,K)-P(I ,J,K))
IF (TT) 511,357,511

511 DA=(D(I+1,J,K)-D(I,J,K))
GO TO 357

353 IF (I-IMAX) 355,356,400
356 UA=(U(I,J,K)-U(I-1,J,K))

VA=(V(I,J,K)-V(I-1,J,K))
WA=(W(I,J,K)-W(I-1,J,K))
PA=(P(I,J,K)-P(I-1,J,K))
IF (TT) 521,357,521

521 DA=(D(I,J,K)-D(I-1,J,K))
GO TO 357

355 UA=(U(I+1,J,K)-U(I-1,J,K))/2.
VA=(V(I+1,J,K)-V(I-1,J,K))/2.
WA=(W(I+1,J,K)-W(I-1,J,K))/2.
PA=(P(I+1,J,K)-P(I-1,J,K))/2.
IF (TT) 531,357,531

531 DA=(D(I+1,J,K)-D(I-1,J,K))/2.
357 IF (J-1) 400,359,358
359 UB=(U(I,J+1,K)-U(I,J,K))

VB=(V(I,J+1,K)-V(I,J,K))
WB=(W(I,J+1,K)-W(I,J,K))
PB=(P(I,J+1,K)-P(I,J,K))
IF (TT) 541,362,541

541 DB=(D(I,J+1,K)-D(I,J,K))
GO TO 362

358 IF (J-JMAX) 360,361,400



154

361 UB=(U(I,J,K)-U(I,J-1,K))
VB=(V(I,J,K)-V(I,J-1,K))
WB=(W(.I,J,K)-W(I,J-1,K))
PB=(P(I,J,K)-P(I,J-1,K))
IF (TT) 551,362,551

551 DB=(D(I,J,K)-D(I,J-1,K))
GO TO 362

360 UB=(U(I,J+1,K)-U(I,J-1,K))/2.
VB=(V(I,J+1,K)-V(I,J-1,K))/2.
WB=(W(I,J+1,K)-W(I,J-1,K))/2.
PB=(P(I,J+1,K)-P(I,J-1,K))/2.
IF (TT) 561,362,561

561 DB=(D(I,J+1,K)-D(I,J-1,K))/2.
362 IF (K-I) 400,364,363
364 UC=(U(I,J,K+1)-U(I,J,K))

VC=(V(I,J,K+1)-V(I,J,K))
WC=(W(I,J,K+1)-W(I,J,K))
PC=(P(I,J,K+1)-P(I,J,K))
IF (TT) 571,367,571

571 DC=(D(I,J,K+1)-D(I,J,K))
GO TO 367

363 IF (K-KMAX) 365,366,400
366 UC=(U(I,J,K)-U(I,J,K-1))

VC=(V(I,J,K)-V(I,J,K-1))
WC=(W(I,J,K)-W(I,J,K-1))
PC=(P(I,J,K)-P(I,J,K-1))

IF (TT) 581,367,581
581 DC=(D(I,J,K)-D(I,J,K-1))

GO TO 367
365 UC=(U(I,J,K+1)-U(I,J,K-1))/2.

VC=(V(I,J,K+1)-V(I,J,K-1))/2.
wc=(W(I,J,K+1)-W(I,J,K-1))/2..
PC=(P(I,J,K+1)-P(I,J,K-1))/2.
IF (TT) 591,367,591

591 DC=(D(I,J,K+1)-D(I,J,K-1))/2.
C
C CONVERT ALL DERIVATIVES FROM GENERAL TO CYLINDRICAL COORDINATES
C
367 UR=AR(I,J,K)*UA+BR(I,J,K)*UB+CR(I,J,K)*UC

UT=AT(I,J,K)*UA+BT(I,J,K)*UB+CT(I,J,K)*UC
UZ=AZ(I,J,K)*UA+BZ(I,J,K)*UB+CZ(I,J,K)*UC
VR=AR(I,J,K)*VA+BR(I,J,K)*VB+CR(I,J,K)*VC
VT=AT(I,J,K)*VA+BT(I,J,K)*VB+CT(I,J,K)*VC
VZ=AZ(I,J,K)*VA+BZ(I,J,K)*VB+CZ(I,J,K)*VC
WR=AR(I,J,K)*WA+BR(I,J,K)*WB+CR(I,J,K)*WC
WT=AT(I,J,K)*WA+BT(I,J,K)*WB+CT(I,J,K)*WC
WZ=AZ(I,J,K)*WA+BZ(I,J,K)*WB+CZ(I,J,K)*WC
PR=AR(I,J,K)*PA+BR(I,J,K)*PB+CR(I,J,K)*PC
PT=AT(I,J,K)*PA+BT(I,J,K)*PB+CT(I,J,K)*PC
PZ=AZ(I,J,K)*PA+BZ(I,J,K)*PB+CZ(I,J,K)*PC
IF .(TT) 370,375,370

370 DR=AR(I,J,K)*DA+BR(I,J,K)*DB+CR(I,J,K)*DC
DT=AT(I,J,K)*DA+BT(I,J,K)*DB+CT(I,J,K)*DC
DZ=AZ(I,J,K)*DA+BZ(I,J,K)*DB+CZ(I,J,K)*DC
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GO TO 380
375 DR=0.0

DT=0.0
DZ=0.0

380 UU=U(I,J,K)
VV=V(I ,J,K)
WW=W(I,J,K)
DD=D(I,J,K)
RR=R(I,J,K)

C
C CALCULATE LOSS TERMS
C

iF(VISC)385,390,385
385 IF((K.LT.KLE).0R.(K.GT.KTE))GO TO 390

CALL DLOSS
IF(I-1)h00,501,502

501 TRA=TAUR(I+1,J,K)-TAUR(I,J,K)
TTA=TAUT(I+1 ,J,K)-TAUT(I ,J,K)
TZA=TAUZ(I+1,J,K)-TAUZ(I,J,K)
GO TO 503

502 IF(I-IMAX)504,505,400
505 TRA=TAUR(I,J,K)-TAUR(I-1,J,K)

TTA=TAUT(I ,J,K)-TAUT(I-1,J,K)
TZA=TAUZ(I,J,K)-TAUZ(I-1,J,K)
GO TO 503

504 TRA=(TAUR(I+1,J,K)-TAUR(I-1,J,K))/2.
TTA=(TAUT(I+1,J,K)-TAUT(I-1,J,K))/2.
TZA=(TAUZ(I+1,J,K)-TAUZ(-1,,J,K)-TAUZ(-1,JK))/2.

503 IF(J-1)400,506,507
506 TRB=TAUR(I,J+1,K)-TAUR(I,J,K)

TTB=TAUT(I ,J+1 ,K)-TAUT(I,J,K)
-TZB=-TAUZ(I,J-+1,K)-TAUZ(-I,J-,K) ...
GO TO 508

507 IF(J-JMAX)509,510,o00
510 TRB=TAUR(I,J,K)-TAUR(I,J-1,K)

TTB=TAUT(I,J,K)-TAUT(I,J-1,K)
TZB=TAUZ(I,J,K)-TAUZ(I,J-1,K)
GO TO 508

509 TRB=(TAUR(I,J+1,K)-TAUR(I,J-1,K))/2.
TTB=(TAUT(I,J+1,K)-TAUT(I,J-1,K))/2.
TZB=(TAUZ(I,J+1,K)-TAUZ(I,J-1,K))/2.

508 IF(K-KLE)390,518,512
518 TRC=TAUR(I,J,K+1)-TAUR(I,J,K)

TTC=TAUT(I,J,K+1)-TAUT(I,J,K)
TZC=TAUZ(I,J,K+1)-TAUZ(I,J,K)
GO TO 513

512 IF(K-KTE)514,515,390
515 TRC=TAUR(I,J,K)-TAUR(I,J,K-1)

TTC=TAUT(I,J,K)-TAUT(I,J,K-1)
TZC=TAUZ(I,J,K)-TAUZ(I,J,K-1)
GO TO. 513

514 TRC=(TAUR(I,J,K+1)-TAUR(I,J,K-1))/2.
TTC=(TAUT(I,J,K+1)-TAUT(I,J,K-1))/2.
TZC=(TAUZ(I,J,K+1)-TAUZ(I,J,K-1))/2.
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513 TRWZ=AZ(I,J,K)*TRA+BZ(I,J,K)*TRB+CZ(I,J,K)*TRC
TTWZ=AZ(I,,J,K)TTA+BZ(I,J,K)*TTB+CZ(I,J,K)*TTC
TZWT=AT(I,J,K)*TZA+BT(I,J,K)*TZB+CT(I,J,K)*TZC
FR=-TRWZ/DD
FT=-TTWZ/DD
FZ=-TZWT/(DD*RR)
GO TO 391

390 FR=0.0
FT=O.O
FZ=O.0

C
C CALCULATE POINT RESIDUALS
C

391 R1=PR/DD+UU*UR+VV UT/RR+WW*UZ - ( (VV+RR*REV)*(VV+RR*REV))/RR+FR
R2=PT/(DD*RR)+UU*VR+VV*VT/RR+WW*VZ+UU*VV/RR+2.*UU*REV+FT
R3=PZ/DD+UU*WR+VVWWT/RR+WW*WZ+FZ
R4=UU/RR+UR+VT/RR+WZ+(UU*DR+VV*DT/RR+WW*DZ ) /DD
RES(I,J,K)=R*R1+R2*R2+R3*R3+R4*R4

400 RETURN
END
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SUBROUTINE DLOSS
IMPLICIT LOGICAL*1 ($)

C
C CALCULATION OF LOSS TERMS IN MOMENTUM EQUATIONS-
C

COMMON U(7,7,39),V(7,7,39),W(7,7,39),P(7,7,39),,R(7,7,39)
1,T(7,7,39),Z(7,7,39),FR,FT,FZ,DMAX(4),DELX(4),NSEQ(4),RES(8,8,4o),
2AR(7,7,39),AT(7,7,39) ,AZ(7,7,39),BR(7,7,39) ,BT(7,7,39) ,BZ(7,7,39),
3CR(7,7,39),CT(7,7,39),CZ(7,7,39),XH,RSTAR,
hTT,PSAT,DLIQ,REV,A,M,NVAR,NTR,IRSTAR,DX,I,J,K,II,JJ,KK,IMAX,JMAX,K
5MAX,VISC,NI[BD,KLE,KTE,WRE(7,7,39)
COM1MON /$$LOSS/ TAUR(7,7,26),TAUT(7,7,26),TAUZ(7,7,26),TAU(7,7,26)
COMMON/$$CFRE/ SLOPEP(25),SLOPES(25),BP(25),BS(25)
DIMENSION VEL(7)

c
C OMEGA AND RTIP ARE SPECIFIC PARAMETERS OF PENN STATE INDUCER
C

OMEGA=450.*3.14159/30.
RTIP=18.25/12.
DEN=D(I,J,K)
JMIN=1
UBAR=0.0
UTIP=RTIP*OMEGA

C
C FIND PASSAGE AVERAGED VELOCITY
C

DO 100 J1=1,J4AX
VEL(Jl)=SQRT(U(I,J1,K)*U(I,J1,K)+V(I,Jl,K)*V(I,J1,K)+W(I,Jl,K)*W(I

1,Jl,K))
UBAR=UBAR+VEL( Ji)

100 CONTINUE
XJMAX=JMAX
UBAR=UBAR/XJMAX

C
C CALCULATE REYNOLDS NUMBER, FIND APPROPRIATE SKIN FRICTION
C COEFFICIENT, THEN CALCULATE THE COMPONENTS OF SHEAR STRESS
C

UU=UBAR*UTIP
RR=R(I,J,K)*RTIP
RE=UU*RR/VISC
CF1=BP(K)/(RE**SLOPEP(K))
CF2=BS(K)/ (RE**SLOPES(K))
TAU1 = CF1*DEN*UBAR**2. /2.
TAU2=-CF2*DEN*UBAR**2./2.
XNUM=J-JMIN
XDEN=JMAX-JMIN
RATIO= XNUM/XDEN
TAU(I,J,K)=TAU1-RATIO*(TAUl-TAU2)
IF(J-1)400,359,358

359 DELU=(U(I,J+1,K)-U(I,J,K))
DELV=(V(I,J+1,K)-V(I,J,K))
DELW=(W(I,J+1,K)-W(I,J,K))
DELVEL=(VEL(J+1)-VEL(J))
GO TO 362
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358 IF (J-JMAX) 360,361,400
361 DELU=(U(I,J,K)-U(I,J-1,K))

DELV=(V(I,J,K)-V(I,J-1,K))
DELW=(W(I,J,K)-W( I ,J-1,K))
DELVEL=(VEL(J)-VEL(J-1))
GO TO 362

360 DELU=(U(I,J+1,K)-U(I,J-1,K))/2.
DELV=(V(I,J+1,K)-V(I,J-1,K))/2.
DELW=(W(I,J+1,K)-W(I,J-1,K))/2.
DELVEL=(VEL(J+1)-VEL(J-1))/2.

362 TAUR(I,J,K)=TAU(I,J,K)*DELU/DELVEL
TAUT(I,J,K)=TAU(I,J,K)*DELV/DELVEL
TAUZ(I,J,K)=TAU(I,J,K)*DELW/DELVEL

400 RETURN
END
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SUBROUTINE ADJ
IMPLICIT LOGICAL ($)

c
C REDUCTION OF TOTAL RESIDUAL BY SUCCESSIVE VARIATIONS OF
C PARAMETERS U, V, W, P
C

COMMON U(7,7,39),V(7,7,39),W(7,7,39),P(7,7,39),D(7,7,39),R(7,7,39)
1,T(7,7,3 9 ),Z(7,7,39),FR,FT,FZ,DMAX(4),DELX(4),NSEQ(4),RES(

8 , 8 , 4 0),
2AR(7,7,39),AT(7,7,39) ,AZ(7,7,39),BR(7,7,39),BT(7,7,39),BZ(7,T,39),
3CR(7,7,39),CT(7,7,39),CZ(7,7,39),XH,RSTAR,
4TT,PSAT,DLIQ,REV,A,M,NVAR,NTR,IRSTAR,DX,I,J,K,II,JJ,KK,IMAX,JMAX,K
5MAX,VISC,NBD,KLE,KTE,WRE(7,7,39)

C
C CURRENT VALUES OF ALL AFFECTED QUANTITIES TEMPORARILY STORED

C
H =RES( II ,JJ,KK)
IF (II-1) 1101,1101,1100

1100 H2=RES(II-1,JJ,KK)
1101 IF (II-IMAX) 1102,1103,1103
1102 H3=RES(II+1,JJ,KK)
1103 IF (JJ-1) 1105,1105,1104
1104 Hh=RES(II,JJ-1,KK)
1105 IF (JJ-JMAX) 1106,1107,1107
1106 H5=RES(II,JJ+1,KK)
1107 IF (KK-1) 1109,1109,1108
1108 H6=RES(II,JJ,KK-1)
1109 IF (KK-KMAX) 1110,1111,1111
1110 H7=RES(II,JJ,KK+1)
1111 RHLD=RSTAR

DX=DELX(NVAR)
HU=U(II,JJ,KK)

--HV=V(II,JJ,KK)
HW=W(II,JJ,KK)
HP=P(II,JJ,KK)
HD=D(II,JJ,KK)

C
C SUCCESSIVELY APPLY TRIAL VARIATIONS TO U, V, W, P
C

5 DO 480 MA=1,M
420 GO TO (h22,423,424,425),NVAR
422 U(II,JJ,KK)=HU+DX

GO TO 421
423 V(II,JJ,KK)=HV+DX

GO TO 421
424 W(II,JJ,KK)=HW+DX

GO TO 421
425 P(II,JJ,KK)=HP+DX

IF (TT) 461,421,461
461 I=II

J=JJ
K=KK
CALL STATE

421 NTR=NTR+1
IRSTAR=2
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CALL STAR
IF (RHLD-RSTAR) 430,430,431

431 IF (ABS(DX)-DMAX(NVAR)) 457,457,920
920 DMAX(NVAR)=ABS(DX)

GO TO 457
430 IF (DX) 433,457,432
432 DX=-DX

GO TO 420
433 DX=-A*DX
480 CONTINUE

C
C RESTORE ALL AFFECTED QUANTITIES TO ORIGINAL VALUES

C
U(II,JJ,KK)=HU
V(II,JJ,KK)=HV
W(II,JJ,KK)=HW
P(II,JJ,KK)=HP
D(II,JJ,KK)=HD

445 RSTAR=RHLD
RES(II,JJ,KK)=H1
IF (II-1) 446,446,447

447 RES(II-1,JJ,KK)=H2
446 IF (II-IMAX) 449,448,448
449 RES(II+1,JJ,KK)=H3
448 IF (JJ-1) 450,450,451
451 RES(II,JJ-1,KK)=H4
450 IF (JJ-JMAX) 453,452,452
453 RES(II,JJ+1,KK)=H5
452 IF (KK-1) 454,454,455
455 RES(II,JJ,KK-1)=H6
454 IF (KK-KMAX) 456,457,457
456 RES(II,JJ,KK+I)=H7 -..
457 RETURN

END
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SUBROUTINE STAR
IMPLICIT LOGICAL*1 ($)

C
C CALCULATION OF LOCAL STAR RESIDUAL
C

COMMON U(7,7,39),V(7,7,39),W(7,7,39),P(7,7,39),D(7,7,39),R(7,7,39)
1,T(7,7,39),Z(7T,,39),FR,FT,FZ,DMAX(4 ),DELX(4),NSEQ(4),RES(8,8,40),
2AR(7,7,39) ,AT(7,7,39),AZ(7,7,39),BR(7,7,39),BT(7,7,39),BZ(7,7,39),
3CR(7,7,39),CT(7,7,39),CZ(7,7,39),XH,RSTAR,
4TT,PSAT,DLIQ,REV,A,M,NVAR,NTR,IRSTAR,DX,I,J,K,II,JJ,KK,IMAX,JMAX,K
514AX,VISC,NBD,KLE,KTE,WRE(7,7,39)
RSTAR=0.0
IGO=0
I=II
J=JJ
K=KK
NBD=1

389 GO TO (375,378),IRSTAR
378 CALL.RESID
375 RSTAR=RSTAR+RES(I,J,K)

NBD=0O
400 IGO=IGO+I

GO TO (391,392,393,394 ,395,396,402),IGO
391 I=II-1

IF (I-l) 400,389,389
392 I=II+1

IF (I-IMAX) 389,389,400
393 I=II

J=JJ-i
IF (J-l) 400,389,389

394 J=JJ+1
SIF (-J-JMAX) 389,389;400

395 J=JJ
K=KK-1
IF (K-I) 400,389,389

396 K=KK+I
IF (K-KMAX) 389,389,400

402 RETURN
END
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SUBROUTINE STATE
IMPLICIT LOGICAL*1 ($)

C
C CALCULATION OF POINT DENSITY
C

COMMON U(7,7,39),V(7,7,39),W(7,7,39),P(7,7,39),D(7,7,39),R(7,7,39)
1,T(7,7,39),Z(7,7,39),FR,FT,FZ,DMAX(4 ) ,DELX(4 ) ,NSEQ(4 ) ,RES(8,8,40),
2AR(7,7,39),AT(7,7,39),AZ(7,7,39),BR(7,7,39),BT(7,7,39),BZ(7,7,39),
3CR(7,7,39),CT(7,7,39),CZ(7,7,39),XH,RSTAR,
4TT,PSAT,DLIQ,REV,A,M,NVAR,NTR,IRSTAR,DX,I,J,K,II,JJ,KK,IMAX,JMAX,K
5MAX,VISC,NBD,KLE,KTE,WRE(7,7,39)
PSP=PSAT-P(I,J,K)
IF (PSP) 101,101,102

101 D(I,J,K)=DLIQ
GO TO 103

102 D(I,J,K)=DLIQ/(1.+TT*PSP)
103 RETURN

END.
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APPENDIX C

Fortran Listing of Program to Solve Hotwire Equations
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C
C ROTATING HOTWIRE MEASUREMENTS IN PENN STATE INDUCER FALL 1973
C
C PROGRAM DEVELOPED TO CALCULATE RELATIVE MEAN VELOCITIES,
C TURBULENCE .INTENSITIES..AND..STRESSES FROM THE EXPERIMENTAL DATA
C

IMPLICIT LOGICAL*1 ($)
DIMENSION FVOOL1(4,6,10),FVOLT2(h,6,10),FVOLT3(4,6,10)
DIMENSION SLOPE1(4 ),SLOPE2 (4),SLOPE3(4)
DIMENSION FVEL1(6,10),FVEL2(6,10),FVEL3(6,10)
DIMENSION V1(4,15),V2(4,15),V3(4,15)
DIMENSION NPTS(15),CINCH(4,15),CALV1(h,15),CALV2(4,15),CVEL(h,15)
DIMENSION VCRAN2(4,6,10),VEL1(6,10),VEL2(6,10)
DIMENSION VCHAN3(4,6,10) ,VEL3(6,1O),CALE3(4,15),CALV3(4,15)
DIMENSION CALE1(4,15),CALE2(4,15) ,RRAD(6)
DIMENSION THETA(10) ,RAD(6),VCHAN1(4,6,10)
DIMENSION C(3,3),A(6,6),TEMP(10)
REAL*8 CC(3,3),AA(6,6),D(3),B(6),DET

C DEFINE PROGRAM CONSTANTS
C

UTIP=450.*2.*3.14159*18.25/(60.*12.)
FACT=SQRT(2.)/2.
FACTOR=19. /8.
ATTEN=27.h
RAT=3.14159/180.

C
C READ IN CONVERGENCE CRITERIA
C

READ( 5,82)NREPS,EPS
C

C READ IN HOTWIRE CONSTANTS FOR L/D_
C

RFAD(5,70)XK1,XK2,XK3
C
C READ IN CALIBRATION CURVES
C

READ(5,6)CALA1,CALA2,CALA3
CALA1=CALA1*RAT
CALA2=CALA2*RAT
CALA3=CALA3*RAT
READ(5,5)NCAL
DO 100 I=1,NCAL
READ(5,10)NPTS(I),TEMP(I)
JJ=NPTS(I)
DO 105 J=1,JJ
READ(5,15).CINCH(I,J), CALE1(I,J),CALE2(I,J) ,CALE3 (I,J)
CVEL(I,J)=66.7*SQRT(CINCH(I,J))

C
C APPLY TEMPERATURE CORRECTION TO CALIBRATION CURVES
C

CVEL(I,J)=CVEL(I,J)*(1.0+0.001*(TEMP(J)-73.0))
CALE1(I,J)=CALE1(I,J)*(1. 0+0.001*(TEMP(J)-73.0))
CALE2(I, J)=CALE2(I,J)*(1.0+0.0014*(TEMP(J)-73.0))
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B4=xK*KJ*Bl*Bl+B2*B2+B3*B3
c4=xK1*xK1*Cl*Cl+C2*.C2+C3*C3
D4=2.*(Xla*XKI*Al*B1+A2*B2+A3*B3)
E4=2. * ( xj*x]l, A*1*cl+A2*C2+A3*C3)
F4=2 -*( XK1*XK1*Bl*Cl+B2*C2+B3*C3)

C
A5=XK2*XK2*Dl*Dl+D2*D2+D3*D3
B 5XK2*xK2*El*El+E2*E2+E3*E3
C5=XK2*XK2*Fl*Fl+F2*F2+F3*F3
D5=-2 .*(XK2*XK2*Dl*El+D2*E2+D3*E3)
E5=2 . *( XK2*XK,2*Dl*Fl+D2*F2+D3*F3)
F5=2.* (XK2*XK2*E1*Fl+Es2*F2+EP3*F3)

C
A6=XK3*XK3*G1*Gl+G2*G2+G3*G3
B6=K3XK3*XH1Xll1+X2*XH2+XH3*XH13
c6=XK3*xK,3*XI1*xll+X12*x12+xI 3*XI 3
D6=2 . *( XK3*XK3*G1*XT1+G2*XH2+G3*113)
E6=2. *( XK3*XK3*Gl*XI1+G2*XI2+G3*X13)
F6=2 * *( ,*M*T1X1+H*I+a3X3

C
C(i ,1)=SQRT(A4)
C(1,2)=D4/(2.*C(l,l))
0(1,3 )=E4/( 2.*C(1,1) )
C(2,1)=SQRT(A5)
C(2,2)=D5/(2.*C(2,1))
C(2,3)=E5/(2.*C(2,1))
C(3,1)=SQRT(A6)
C(3,2)=D6/(2.*C(3,1))
C(3,3)=E6/(2.*C(3,1))

C
C READ IN 11AT AND FLUCTUATING. VOLTAGES, FIND CORRESPONDING VELOCITIES
C

DO 115 J=1,NOT
READ( 5,4o)IPRO,JRAD
DO 110 I=1,JRAD
IF(IPRO.EQ.9)GO TO 140
IPROBE=IPRO
READ(5S,46)VCH1,VCli2,VCH3,EXTEMP
READ( 5,45)FVlSQ,FV2SQ,FV3SQ
READ( 5,75 )FVlP2 ,FV1M2 ,FVP3,FVlM3,FV2P3,FV2M3
GO TO 145

140 READ( 5,47)Ch , VCH2 ,VCH3 ,EXTET-P ,IPROBE
READ( 5 ,1 5)FV1SQ,FV2SQ,FV3SQ
RE AD(5,75)FV1P2,FV1Ml2,FV1P3,FV1M3,FV2P3,FV2M3

145 VCHIAN1(IPROBE,I,J)=VCH1
VCIIAN2(IPROBE,I ,J)=VCH2
VCHAN3 (IPROBE., I , J)=VCH3

APPLY TEMPERATURE CORRECTION TO EXPERIMENTAL DATA

TCORR=1. 0+0. OO28*(ExTE4-73. O)
VCHAN1(IPRO3E,I ,J)=TCORR*VCH-AN1(.IPROBE,I ,J)**2.
VCIIAN2( IPRO3E.,I ,J)=TCORR*VCHxI12( IPROBE I I,J)**2.
VCHAN3( IPROBE,I ,J)=TCORR*VCA.T3( IPROBE,I ,J)**2.
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JJ=IPTS(IPROBE)
DO 120 K=1,JJ

IF(VCHAN1(IPROBE,I,J).GT.CALV1(IPROBE,K))GO TO 120

RATIO=(VCHAN1( IPROBE,I,J)-CALV1(IPROBE,K-1))/(CALV1(IPROBE,K)-CALV

11(IPROBE,K-1))
VEL1(I,J)=Vl(IPROBE,K-1)+RATIO*(V1(IPROBE,K)-V1(IPROBE,K-1))
VEL1(I,J)=VEL1(I,J)**2.
Kl=K
GO TO 121

120 CONTINUE
RATIO=(VCHAN1(IPROBE,I,J)-CALV1(IPROBE,JJ-1))/(CALV1(IPROBEJJ)-CA
ILV1(IPROBE,JJ-1))
VEL1(I,J)=VI(IPROBE,JJ-1)+RATIO*(V1(IPROBE,JJ)-V1(IPROBE,JJ-1))
VELI(I,J)=VEL1(I,J)**2.
K1=99

121 JJ=TTPTS(IPROBE)
DO 125 K=1,JJ
IF(VCHAN2(IPROBE,I,J).GT.CALV2(IPROBE,K))GO TO 125
RATIO=(VCHAN2(IPROBE,I,J)-CALV2(IPROBE,K-1))/(CALV2(IPROBE,K)-CALV

12(IPROBE,K-1))
VEL2(I,J)=V2(IPROBE,K-1)+RATIO*(V2(IPROBE,K)-V2(IPROBE,K-1))
VEL2(I,J)=VEL2(I,J)**2.
K2=K
GO TO 122

125 CONTINUE
RATIO=(VCHAN2(IPROBE,I,J)-CALV2(IPROBE,JJ-1))/(CALV2(IPROBE,JJ)-CA
1LV2(IPROBE,JJ-1))
VEL2(I,J)=V2(IPROBE,JJ-1)+RATIO*(V2(IPROBE,JJ)-V2(IPROBE,JJ-1))
VEL2(I,J)=VEL2(I,J)**2.
K2=99

122 JJ=NPTS(IPROBE)
DO 13jK=1,JJ -
IF(VCHATN3(IPROBE,I,J).GT.CALV3(IPROBE,K))GO TO 130
RATIO=(VCHAN3(IPROBE,I,J)-CALV3(IPROBE,K-1))/(CALV3(IPROBE,K)-CALV

13(IPROBE,K-1))
VEL3(I,J)=V3(IPROBE,K-1)+RATIO*(V3(IPROBE,K)-V3(IPROBE,K-1))
VEL3(I,J)=VEL3(I,J)**2.
K3=K
GO TO 135

130 CONTINUE
RATIO=(VCIHAN3(IPROBE,I,J)-CALV3(IPROBE,JJ-1))/(CALV3(IPROBE,JJ)-CA
1LV3(IPROBE,JJ-1))
VEL3(I,J)=V3(IPROBE,JJ-1)+RATIO*(V3(IPROBE,JJ)-V3(IPROBE,JJ-1))
VEL3(I,J)=VEL3(I,J)**2.
K3=99

C
C USE HEWTON-RAPHSON METHOD TO CALCULATE MEAN VELOCITIES
C
C FIND INITIAL VALUES OF VELOCITY USING LINEAR EQUATIONS
C

135 D(1)=VEL1(I,J)
D(2)=VEL2(I,J)
D(3)=VEL3(I,J)
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C RE-INITIALIZE c(I,J)
C

o(1,1)=SRT(A4)
C(1,2)=D4/(2.*C(1,1))
C(1,3)=E4/(2.*C(l,l))
C(2,1)=SQRT(A5)
C(2,2)=D5/(2.*C(2,1))
C(2,3)=E5/(2.*C(2,1))
c( 3,1)=SQRT(A6)
C(3,2)=D6/(2.*C(3,1))
C(3,3)=E61(2.*c(3,1))
DO 111 11=1,3
DO 111 JJ=1,3
CCCii ,jj)=C(ii,JJ)

111 CONTINUE
CALL DLEQD(CC,D,3,1,3,3,DET)
UO=D(2)
VO=D(l)
WO=D( 3)
VINIT=VO
UINIT=UO
I NI T=WO

C
C BEGIN NEWTON-RAPHSON ITERATION ON NONLINEAR EQUATIONS

DO 200 N=1,NREPS
AA1=SQJRT(A4)
AA2=SQRT(A5)
AA3=SQRT (A6)
BB1=D4/(2.*AA1)
BB2=D5/(2.*AA2)

- BB3=D6/(-2i*AA3) ---

CC1=AA1*(B4/(2A)-D*D/(8.*A*A4l))
DD1=AA1*(F4/(2.*Ah)-D*E/(4.*A*A4))
EE1=E4/(2.*AAl)
FF1=AA1*(C4/(2.*A4)-E4*E)4/(8.#A4*A4))
CC2=AA2*(B5/(2.*A5)-D5*D5/(8.*A5*A5))
DD2=AA2*(F5/(2. *A5 )...5*E5/(.*A5*A5))
EE2=E5/(2.*AA2)
FF2=AA2*(C5/(2.*~A5)-E5*E5/(8.*A5*A5))
CC3=AA3*(B6/(2.*A6)-D6*D6/(8.*A6*A6))
DD3=AA3*(F6/(2.*A6)-D6*E6/(.*~A6*A6))
EE'F3=E6/(2.*AA3)
FF3=AA3*(C6/(2.*A6)-E6*E6/(8.*A6*A6))
GG1=AA1*VO+BB1*UO+CC1*UO*UO/VO+DD1*UO*WO/VO+EE1*WO+FF1*WO*wo0/VO

1-VEL1(I,J)
GG2=A-A2 *VO+BB2*UO+CC2*UO*UO /VO+DD2*UO*WO/VO+EE2*WIO+FF2*WO$WO0/VO

1-VFL2(I,J)
GG3=AA3*VO+BB3*UO+CC3*UO*UO /VO+DD3*UO*WO/VO+EE3*WTO+FF3*WO*WO/VO

1-VFEL3(I,J)
Gl1WV=AAl-CC1*UO*Uo/ ( VO*VO) DD1*UO*WO/ (VO*vo ) FF1*WO*WO/ (vo*vo)
G2WV=AA2-CC2*UO*UO/ (vo*vo ) DD2*UO*WO/ (VO*VO ) FF2*WO7*WTO/ (vo*vo)
G3wV=AA3-CC3*UO*uo/ (VO*VO)-DD3*uo*wo!/(vo*vo )-FF3*wo7*WO/ (vo*vo)
G1WU=-BB1+2 .*CC1*UO/VO+DD1*WTO/VO



169

G2WU=BB2+2. *CC2*UO/VO+DD2*WO/VO
G3WU=BB3+2. *CC3*UO/VO+DD3*W0/V0
GlWW=EE1+DD1*UO/VO+2. *FF1*WO/VO
G2WW=EE2+DD2*UO/VO+2.*FF2*WO/VO
G3WW=EE3+DD3*UO/VO+2.*FF3*WO/VO
D(1)=-GG1
D(2)=-GG2
D(3)=-GG3
C(1,1)=G1WV
C(1,2)=Glwu
C(1,3)=Glww
C(2,1)=G2WV
C(2,2)=G2WU
C(2,3)=G2WW
C(3,1)=G3WV
C(3,2)=G3WU
C(3,3)=G31W
DO 205 II=1,3
DO 205 JJ=1,3
CC(II,JJ)=C(II,JJ)

205 CONTINUE
CALL DLEQD(CC,D,3,1,3,3,DET)
DELV=D(1)
DELU=D (2)
DELW=D( 3)
WV=VO+DELV
WU=UO+DELU
WW=WO+DELW

C
C APPLY CONVERGENCE CRITERIA
C

- DELV=ABS(VO-WV)- --- -
DELU=ABS(U 0-WU)
DELW=ABS(WO-WW)
EPSV=EPS*ABS(VO)
EPSU=EPS*ABS(UO)
EPSW=EPS*ABS (WO)
IF(DELV.GE.EPSV)GO TO 210
IF(DELU.GE.EPSU)GO TO 210
IF(DELW.GE.EPSW)GO TO 210

C
C SOLUTION CONVERGED
C

WRITE(6,84)N
WR=WU/UTIP
WT=WV/UTIP
WZ=WW/UTIP
W=SQRT (WT*WT+WR* WR+WZ*WZ)
WRITE(6,61)WT,WR,WZ,W
GO TO 220

C
210 WWT=WV

TI*R=WUWWZ=WW
wwqz=ww
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IF(N.GE.2)GO TO 206
VO=WV
U0=WU
WO=WW
WWT1=WV
WWR1=WU
WGZ1=WW
GO TO 200

206 VO=(WWT+WWTI)/2.
WO=(WWZ++wfZl)/2.
uo=(WWR+WWR1)/2.
WWT1=WWT
WWR1=WWR
WWZ1=WwZ

200 CONTINUE
C
C SOLUTION FAILED TO CONVERGE - USE INITIAL VALUES OF VELOCITY
C CALCULATED FROM LINEAR EQUATIONS FOR TURBULENCE DERIVATIONS
C

WRITE(6,86)NREPS
WV=VINIT
WU=UINIT
WW=WINIT
WR=WU/UTIP
WT=WV/UTIP
WZ=WW/UTIP
W=SQRT (WT*lWT+W R* wR+wZ*WZ)
WRITE(6,61)WT,WR,WZ,W

C
C USE LINEARIZED THEORY TO CALCULATE FLUCTUATING VELOCITIES
C

220 FACT1=4..*SQRT(VCHA 1 (IPROBE,I,J))*SQRT(VEL1(II,J))/SLOPE1(IPROBE)
FACT2=4. *SQRT( VCHAN2( IPROBE,I,J) )*SQRT(VEL2(I,J) )/SLOPE2( IPROBE)
FACT3=4.*SQRT(VCHAN3(IPROBE,I,J))*SQRT(VEL3(I,J) )/SLOPE3(IPROBE)
FV1=SQRT(FVISQ)/ATTEN
FV2=SQRT (FV2SQ)/ATTEN
FV3=SQRT(FV3SQ)/ATTEN
Ul=FACT1*FV1
U2=FACT2*FV2
U3=FACT3*FV3
FVEL( I,J)=Ul*U1
FVEL2(I,J)=U2*U2
FVEL3(I,J)=U3*U3
FViP2=FV1P2 / (ATTEN*ATTEN)
FV1M2=FV1M2/(ATTEN*ATTEN)
FV1P3=FVlP3/(ATTEN*ATTEN)
FV1M3=FV1M3/ (ATTEN*ATTEN)
FV2P3=FV2P3/ (ATTEi*ATTEN)
FV2M3=FV2M3/(ATTEN*ATTEN)
FV12=(FV1P2-FVlM2)/4.
FV13=(FV1P3-FV1M3)/4.
FV23= ( FV2P3-FV2M3)/4.
FVEL12=FACT1*FACT2*FV12
FVEL13=FACT1*FACT3*FV13
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FVEL23=FACT2*FACT3*FV23
C
C CALCULATE FLUCTUATING VELOCITY COEFFICIENTS
C

AA1=SQRT(A4)
AA2=D4/(2.*AAl)
AA3=E4/(2.*AAl)

AA4=AA1*(B4/(2.*A4)-D4*D4/(8.*A4*A4))

AA5=AA1*(c4/(2.*A4)-E4*E4/(8.*A4*A4))
AA6=AA1*(F4/(2.*A4)-D4*E4/(4.*A4*A4))

AAT=AA1*(B4/A4-D4*D4/(4.*A4*A4))
AA8=AA1*(C4/A4-E4*E4/(4.*A4*A4))
AA9=AA6
BB1=SQRT(A5)
BB2=D5/(2.*BBl)
BB3=E5/(2.*BBl)
BB4=BB1*(B5/(2.*A5)-D5*D5/(8.*A5*A5))
BB5=BB1*(C5/(2 *A5)-EM5/ 8:*A5*A5BB6=BBI*(F5/(2:*A5)-D5*E5/ 4 *A5*A5
BBT=BB1*(B5/A5-D5*D5/(4.*A5*A5))
BB8=BB1*(C5/A5-E5*E5/ (4.*A5*A5))
BB9=BB6
CC1=SQRT(A6)
CC2=D6/(2 *CCl)
CC3=E6/(2:*CCl)

cc4=ccl*(B6/(2.*A6)-D6*D6/(8.*A6*A6))
CC5=CC1*(C6/(2.*A6)-E6*E6/(B..*A6*A6))
cc6=ccl*(F6/(2.*A6)-D6*E6/(4.*A6*A6))
CCT=CC1*(B6/A6-D6*D6/(4.*A6*A6))
cc8=ccl*(c6/A6-E6*E6/(4.*A6*A6))
ccg=cc6

---AAA1=AAl
AAA2=BB1
AAA3=CC1
BBB1=AA2+AA7*WR/WT+AA6*WZ/WT
BBB2=BB2+BB7*WR/WT+BB6*wz/WT
BBB3=CC2+CC7*i4R/wT+cc6*i4z/wT
CCC1=AA3+AA8*1-TZ/VIT+AA6*WR/WT
CCC2=BB3+BB8*WZ/WT+BB6*TwR/WT
CCC3=CC3+CC8*WZ/WT+CC6*WR/WT
A(1,1)=AAA1*AAAl
A(1,2)=BBB1*BBB1
A(1,3)=CCC1*CCC1
A(1,4)=2.*AAA1*BBB1
A(1,5)=2.*AAA1*CCC1
A(1,6)=2.*BBB1*CCC1
A(2,1)=AAA2*AAA2
A(2,2)=BBB2*BBB2
A(2,3)=CCC2*CCC2

A(2,4)=2.*AAA2*BBB2
A(2,5)=2.*AAA2*CCC2
A(2,6)=2.*BBB2*CCC2
A(3,1)=AAA3*AAA3
A(3,2)=BBB3*BBB3
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AC 3,3)=CCC3*CCC3
A(3,4)=2.*AAA3*BBB3
A(3,5)=2.*AAA3*CCC3
A( 3,6)=2 *BBB3*CCC3
A(4,1)=AAA1*AAA2
A(4,2)=BBB1*BBB2
A(4,3)=CCC1*CCC2
A 4,4 )=AAA1*BBB2+ApA2*BBB1
A( 4,5)=AAA1*CCC2+AAA2*CCCl
A(4 ,6)=BBB1*CCC2+CCCl*BBB2
A(5,1)=AAA1*AAA3
AC 5,2)=BBB1*BBB3
A(5,3)=CCC1*CCC3
A( 5,4)=AAA1*BBB3+AAA3*BBB1
AC 5,5 )=AAA1*CCC3+AAA3*CCC1
A( 5,6) =BBB1*CCC3+CCC1*BBB3
A(6-,l)=AAA2*AAA3
A(6,2)=BBB2*BBB3
A( 6,3 )=CCC2*CCC3
A( 6,4)=AAA2*BB133.AAA3*.BBB2
A( 6,5) =AAA2*CCC3+AAA3*CCC2
A( 6,6 )=BBB2*CCC3+CCC2*BBB3
B(1)=FVEL1(I,J)
B(2)=FVEL2(I,J)
B(3)=FVEL3(I,J)
B( h)=FVEL12
B(5)=FVEL13
B( 6)=FVEL23
DO 113 ii=1,6
DO 113 jj=i,6
AA(II ,JJ)=A(II,JJ)

113-CONTINUE
CALL DIXEQD(AA,B;6,1,6,6,DET)

B(2)=DSQRT(B(2))
B(3)=DSQRT(B(3))

C
C CORRECT FLUCTUATING VELOCITIES FOR HIGH TU3RBULENCE INTENSITIES
C

ARG1=1.+FACTOR*(13(1)/(W*UTIP) )**2.
ARG2=1.+FACTOR*(B(2)/(W*UTIP) )**2.
ARG3=1.+FACTOR*(B(3)/(W*UTIP) )**2.
B(1)=B(1)/SQRT(ARG1)
B(2)=B(2)/SQET(ARG2)
3( 3)=BC 3)/SQRT(ARG3)

C
FWlT=B(1)/(W*UTIP)
FWR=B (2) / CW*UTIP)
nlZ=B(3)/(W*UTIP)
WRITE (6,62) FWT, FM, FWZ
B(4)=B()/(w*w*uTiTp*uTip)
B( s)=BC s)/(W*W*uTIrP*UTIP)
B(6)=B(6)/CW*1*UTIP*UTIP)
wRiTE(6,63)B(4) ,B(5) ,BC6)
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QSQOD=FWR*FWR+FWZ*FWZ+FWT*F-WT
WRITE(6,67)QSQD
RATIO1=B(4)/QSQD
RATIO2=B(5)/QSQD4
RATI03=B(6)/QSQD
WRITE( 6,68)RATI01,RATIO2,RATIO3
WRITE(6,99)

110 CONTINUE
115 CONTINUE

C
C FORMAT STATEMENTS
C

5 FORMAT(9X,I1)
6 FORMAT(3F10.5)

10 FORMAT(8X,I2,FlO.5)
15 FORMAT(4F10.5)
20 FORMAT(9X,I1,8X,I2)
25 FORMAT(10F7.3)
32 FORMAT ( 6F1.5)
40 FORMAT(9X,I1,9X,I1)
45 FORMAT(3F10.6)
46 FORMAT (F10.6
47 FORMAT(4F10.6,9X,I1)
61 FORMAT(10X,'MEAN VELOCITIES : ',4E5.5)
62 FORMAT(10X,'TURBULENCE INTENSITIES :',3E15.5)
63 FORMAT(10X,'TURBULENCE STRESSES :',3E15.5)
67 FORMIAT(10X,'TOTAL TURBULENCE ENERGY :',E15.5)
68 FORMAT(10X,'STRESS/ENERGY RATIOS :',3E15.5)
70 FORMAT(3F10.5)
75 FORMAT(6F10.6)
82 FORMAT(5X,I5,F10.5)
-84 FORMAT(5X,'MEAN VELOCITIES -CONVERGED IN' ,I5,'ITERATIONS ')
86 FORMAT(5X,'MEAN VELOCITIES DID NOT CONVERGE AFTER',I5,'ITERATIONS'

1/)
99 FORMAT(1X,//)

STOP
END




